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Summary

Numerical Analysis of Static and Dynamic Sensitivity of Complex Structural Systems
with Random Parameters

In the paper the static and dynamic sensitivity problems of structural multi-degree-of-freedom
systems are considered in terms of uncertainties in design parameters. Starting from the stochas-
tic version of Lagrange equations, based on the mean-point second-order perturbation method,
the hierarchical sets of equations of motion and equilibrium are formulated. The first two proba-
bilistic moments of time-dependent and time-independent structural response as well as the first
two probabilistic moments of static and dynamic sensitivity are derived with the mean values
and cross-covariances of design parameters on input. It allows one to get not only the determin-
istic results of static and dynamic structural response and their sensitivities, but also the solution
accuracy in the form of the mean values and their cross-covariances.

The formulations are illustrated by a number of numerical examples, cable-stayed bridges and
bar domes, for instance. For the suspended bridge, a model with 3563 degrees of freedom, con-
sisting of 154 truss elements, 510 beam elements and 635 shell elements, is adopted. For the
80-bar dome four various models are discussed to verify the influence of finite element setting
on numerical results. A few model examples are analyzed and obtained results are compared
with exact (analytical) solutions presented in the literature.

The beat effects in the structures with repeated geometry is observed and eliminated by using
added masses and dampers. The way of processing and entering the cross-covariances matrix
for design random variables is presented in a Fortran procedure.

The problem of systems with repeatable eigenvalues and the influence of parameter selection
on the result accuracy are included. In the appendices some computer codes to generating input
data of the complex structural model and to forming the cross-covariances matrix of random
parameters are shown.

The paper is finished with concluding remarks on the effectiveness of the above-mentioned for-
mulations and with some new aspects related to the future work.
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Streszczenie

Numeryczna analiza wrażliwości statycznej i dynamicznej złożonych układów
konstrukcyjnych z parametrami losowymi

W pracy rozważono problem statycznej i dynamicznej wrażliwości układów o wielu stopni-
ach swobody, z uwzględnieniem niepewności w parametrach projektowych. Wychodząc ze
stochastycznej wersji równań Lagrange’a i stosując metodę perturbacji w otoczeniu wartości
średnich, sformułowano hierarchiczne układy równań ruchu i równowagi. Wyprowadzono
wyrażenia na pierwsze i drugie momenty probabilistyczne czasowo-zależnej i czasowo-niezależnej
reakcji układu oraz na pierwsze i drugie moment probabilistyczne statycznej i dynamicznej
wrażliwości, wykorzystując wartości średnie i kowariancje wzajemne parametrów projektowych
na wejściu. Pozwala to na uzyskanie nie tylko deterministycznej statycznej i dynamicznej
reakcji układu i ich wrażliwości, jak również dokładności otrzymanych wyników w postaci
wartości średnich i ich wzajemnych kowariancji.

Sformułowania zilustrowano za pomocą przykładów numerycznych, np. mostu podwieszonego
i kopuły prętowej. Dla konstrukcji mostu przyjęto model o 3563 stopniach swobody, składa-
jący się z 154 kratowych, 510 belkowych i 635 powłokowych elementów skończonych. Dla
kopuły tworzonej przez 80 prętów rozpatrzono cztery różne modele metody elementów skońc-
zonych, w celu zbadania wpływu doboru siatki na otrzymane wyniki. Przeanalizowano niektóre
przykłady modelowe, których wyniki porównano z dokładnymi (analitycznymi) rezultatami z
literatury.

Zaobserwowano effekty dudnienia układów geometrycznie się powtarzających i opisano ich
eliminację przy wykorzystaniu dodatkowych mas i tłumików. Przedstawiono także sposób
tworzenia i wprowadzenia macierzy kowariancji wzajemnych losowych zmiennych projek-
towych poprzez procedurę fortranowską.

Ujęto również zagadnienia analizy układu o powtarzających się wartościach własnych i wpływ
doboru parametrów analizy dynamicznej na dokładność uzyskanych wyników. W załącznikach
do rozprawy zawarto programy do generacji danych dla złożonych układów konstrukcyjnych
oraz do tworzenia macierzy kowariancji zmiennych projektowych.

Niektóre uwagi wniosukjące o skuteczności przedstawionych sformułowań kończą rozprawę,
wraz z pewnymi nowymi aspektami dotyczącymi dalszej pracy.
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Glossary of Symbols

(·)T transposed matrix
˙(·) first derivative with respect to time
¨(·) second derivative with respect to time
d·
dba

absolute partial derivative with respect to design variable vector

(·)−1 inverse matrix

α, β coefficients in damping approximation

γm weight density

γ f loads coefficient

δ(·) Dirac delta distribution

δαβ Kronecker delta

1t time step

ǫ small parameter

ε strain vector

θ terminal time condition

λ modal damping coefficient

λα adjoint vector

ν Poisson’s ratio

ξ, ξβ eigenvalue, β-th eigenvalue

ω natural frequency

�, �αβ diagonal matrix of system eigenvalues

σ stress vector

τ time variable

φ structural response functional

ρ mass density

ϕ dynamic coefficient

A cross-sectional area

b, ba vector of design variables

C constitutive matrix

Cov(hr , hs) cross-covariance matrix of nodal random variables

D, Dαβ damping matrix
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E Young’s modulus

E[·] expectation operator

Ep potential energy

Ek kinetic energy

F external force vector

g constant load

G structural response function

h, hr vector of nodal random variables

H(x) shape function matrix

I unit matrix

Ji moment of inertia

KL local stiffness matrix

Ke element’s global stiffness matrix

KG, Kαβ system global stiffness matrix

L lower triangular matrix

L total energy of the system

ML local mass matrix

Me element’s global mass matrix

MG, Mαβ system global mass matrix

N total number of degrees of freedom of the system

q nodal displacements vector in the global coordinate system

qG, qα the whole structure’s global displacements vector

QL nodal loading vector in the local coordinate system

Qe element’s nodal loading vector in the global coordinate system

QG, Qα the whole structure’s nodal loading vector in the global coordinate system

t time

T coordinate transformation matrix

T(ba) terminal time function

u(x, t) displacement vector at point inside a finite element

u∗(t) vector of nodal displacements in continuum

U upper triangular matrix

V capacity

Var(·) variance function

wi wind load

W external force work

xi random variable vector

y, yαβ eigenvector matrix

z normal coordinate vector



Chapter 1

Introduction

Contemporary technology and computer studies are developing in an amazing pace. Comput-

ers and machines have become the basis of functioning in the world today. Therefore, every

new discovery in this area affects other fields of knowledge such as science, industry, medicine,

communication, astronautics, etc. Otherwise, for the technology development we would not be

at the level of life that we are now. The last 60 years show the real revolution in those fields

— the total transition from the huge computing machines taking entire rooms with processing

power comparable to modern calculators to super microcomputers, with astonishing floating-

point operations per second, memory capacities and small enough to fit in an average person’s

hand. Owing to that, we can send people to the Moon, quickly diagnose various diseases and

find cures for them. It is also possible to conduct complex operations, transport ourselves from

one point in the world to another in a matter of hours, or at any time to speak face to face to a

person being at any place on the Earth.

This high speed is also noticeable in civil engineering. Designers compete in creating structures,

crossing the current barriers of height, span, slenderness, etc. This is reflected in developments

of modern programs designed both for creating and calculating selected models. Contemporary

building objects are usually complex systems with irregular shapes, various structural material

properties and support conditions. All those elements make that the solution for such a complex

scheme, becomes impossible from analytical point of view. Therefore, with the development

of computational technology, with years of scientific and experimental research, the Finite El-

ement Method (FEM) was formulated. Shortly, it has become the basis of modern numerical

tools for structural design, and many others. Dating back to the 1940s, a number of works

dealing with this method were written. Some of the first papers that contributed to the devel-

opment of FEM are [14] and [31]. A rapid advancement of this method took place since the

1970s. Thereafter tens of books concerning this problem were published, [3,4,11,32,37,54,68],

for instance.

Since FEM is an approximate method, it requires great knowledge and experience to interpret

obtained results. In one of the approaches, it allows to designate the values of internal forces in

the system at hand, from computed displacements at characteristic points from external loads.

This method challenges for creating a model of selected structures and dividing it into the fi-

nite elements. This means that a continuous system is modelled through a set of discretized

elements connected to each other by the so-called nodal points, or nodes. That is described in

details in [3,54,68], for instance. Depending on the element type, a set of nodal displacements is

7



8 • Introduction

appropriately specified. Because civil engineering structures are complex objects, even the sim-

plest ones consist of at least a few finite elements, which makes them, after applying boundary

conditions, multi-degree-of-freedom (MDOF) systems. Due to fast improvement in computer

technology, analysis of this kind of structures becomes available. In order to compute the sys-

tem as a whole in the base of generalized coordinates, we need to form the mass and stiffness

matrices for the model from corresponding local matrices, which are defined for specific ele-

ments. All procedures necessary to carry out this process can be found in [3,68].

Today’s constructors dream is to develop a way for optimal designing, that is find the best design

point between the considered basic aspects, related to adopted object functions — maximum

permissible load, allowable displacements, execution time, etc. Contemporary tender proce-

dures additionally require to achieve the lowest cost of the whole design. Among these factors,

the most important aspect — the safety of future users of the object, must not be ignored. There

are many papers about this issue, [5,6,12,50,51], for instance.

One of conditions of optimal designing is to create a model which most appropriately describes

the reality. It is equivalent to that, all factors that influence the system’s work, for example the

finite element setting, the external loads, etc., must be chosen and entered to the analysis in

a correct way. It is of great significance for both, making new structures and renovating the

old ones. Technological developments have a great impact on improvement in communica-

tion. When drawing blueprints of bridges and viaducts, which were built in the past centuries,

only "simplified" calculations of loads were considered. Therefore, many of them as historic

building, often require adjusting to contemporary conditions. This involves designing special

strengthening elements, which impose the need for precise computations.

Not only validity of the adopted static scheme and finite element setting is the condition of cre-

ating a model which best reflects the reality. The most appropriate inclusion of any factors that

affect the system has the great importance in this issue. It is commonly known that the dead

load of the specified structural elements may easily be computed by taking into account their

cross-sectional areas and the characteristics of used materials. Support in including the proper

type and values of external loads, and entering them during data processing, are the rules in

civil engineering [69,70,71] etc.

Due to the change of time, most modern structures, are exposed to dynamic factors, which re-

sults that each point in the system experiences the time-dependent displacements under their

influence. When we create a model of a structure located in real world, there are many factors

that affect the system, which should be taken into account. Except the dynamic load there are

some elements that have an influence on the object, for example — contact between various

materials, connections between components, resistance to motion, hydrodynamics, aerodynam-

ics, thermal effects, etc., that causes the gradual disappearance of the vibration in time. The

above-mentioned factors contribute to the damping effect. When this effect is omitted in the

dynamic analysis, the amplitude of vibration under the constant impulse in time, should be un-

changeable, however in practise this kind of situation can not occur. For the systems with one

degree of freedom, the damping is widely discussed in world literature, for instance [13,55,57].

There are some models of this effect, for example viscous, hysteretic and coulomb damping,

that can be successfully applied in this type of system. But it is impossible to use them for

describing the damping in complex structures, with many degrees of freedom, due to the fact

that this problem is very difficult to be solved. For that reason, in our numerical examples we

choose the Rayleigh’s damping, because it turns out that this model presents this phenomenon
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more appropriately in complex systems computed by FEM. The Rayleigh’s damping matrix is

treated as linear combination of stiffness and mass terms, multiplied by coefficients obtained in

experimental way, (cf. [3,57]).

Recently, there is a tendency to create slim and slender forms, which give the impression as

if they were built opposing the nature’s laws. They are the results of striving to overcome the

existing constraints. That leads to the formation of a structure group, which is highly vulnerable

to any changes in loads as well as in design parameters. It is known that larger value of cross-

sectional areas or structural members is advantageous for the load capacity of the considered

object in terms of statics. However it may in several cases contribute to increasing the amplitude

of vibration, which consequently can cause the damage of the system. One of the most impor-

tant questions in the designing is that how the variation of design parameters affect the change of

the system response. Sensitivity analysis gives the answer to that, cf. [9,28,12,15,16,23,48,49].

The sensitivity problem for deterministic systems have been discussed extensively in the liter-

ature [23,]. There exist various approaches and methodologies. In this type of analysis, we are

going to find the sensitivity gradient, which is defined by the changes of the structural response

with respect to the design parameters. As the structural response, the displacements, stresses,

buckling loads or natural frequencies may be considered, while the elements cross-sectional ar-

eas, the plate thickness, the Young modulus or mass destiny can be treated as design variables.

Stochastic analysis [1,20,26,30,60,35,40] includes randomness of structural parameters (geo-

metrical dimensions of the elements, material properties) or external factors (loads, support

conditions). In the context of research of existing objects it turned out that even small un-

certainties in the above mentioned factors have a significant influence to load capacity of the

system. For this reason, in case of a complex structure, changes in the entire model are in-

volved. Due to the spatially distribution of the uncertainties over the structural system, which

is required to be modelled as random fields and complexity of the scheme, this problems must

be considered by numerical methods, because analytical analysis is impossible.

We can distinguish three basic trends in determining the values of structural response that were

discussed in international papers and publications. The first involves perturbation approach and

includes description of linear dependence between the reaction and the random variables using

the Taylor series with retaining terms up to second order [22,40,42]. The second way is called

Monte Carlo simulation and was created by Gauss. It is a statistical method consisting in ran-

dom selection of the variables according to pre-assumed probability distribution. The numbers

are then used for appointing set of random numbers on the basis of the reactions’ equation,

in order to verify the type of uncertainty. Accuracy of the results is directly dependent on the

number of attempts [36,18]. The third trend is Neumanns’ expansion [30,43], rarely used in

structures’ analysis unless it is combined with Monte-Carlo Simulation.

Considering current trends in design, requirements for modern objects and loads which this

complex structures are exposed to, an insightful analysis of combined issues of sensitivity and

stochastics seems to be necessary [34,35,53,58], which is currently rare occurred. Therefore the

main goal of the paper is numerical nonstatistical analysis of statics, dynamics and sensitivity

for the complex systems with deterministic and random parameters. In stochastic computations

we are basing on the second-order version of methodology using the perturbation approach, that

is described above. This is a version of FEM, that includes the randomness in geometry and

material properties, the same as in adopted load.
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The Second chapter is devoted to the deterministic models. In first sections, we obtained the

set of equations of motion for the complex structures with many degrees of freedom, using

the set of Lagrange’s equations of the second type and the formula for the total energy of the

system. In section 2.3, the specific finite elements are presented, with description of possible

displacements and corresponding internal forces and additionally with stiffness matrix formu-

lation. Then, there is shown a detailed description of receiving the modal damping coefficient,

from Rayleigh damping matrix by the mode superposition method, and its entering to the pro-

gram during data processing. In section 2.5 the static and dynamic sensitivity of the system

with respect to the change of the design parameters is presented. In this analysis the displace-

ments, buckling loads, stresses or natural frequencies in particular nodes may be considered

as measures of the structural response, while the cross-section areas of main elements, Young

Modulus and mass density may be treated as design variables.

In the third chapter the models in terms of uncertainties in design parameters are prescribed.

The scope of the previous sections is to formulate the hierarchical set of equations of motion

and equilibrium using the stochastic version of Lagrange’s equation of the second type and

mean-point second-order perturbation method. Based on the first two probabilistic moments of

design random variables, the first to probabilistic moments of static and dynamic response and

their sensitivity will be received. It allows to obtain the deterministic results of time-dependent

and time-independent structural response and their sensitivities, with the solution accuracy in

the form of the mean values and their cross-covariances.

A valuable part of this doctoral dissertation is the illustration of the theoretical considerations in

practical examples. During the research, in graphical and computational programme, the mod-

els of selected structures inspired by real objects are created. First we enter the FEM setting,

support conditions, characteristics of particular elements and designated external loads, then the

static, dynamic and sensitivity analysis for the deterministic and stochastic systems with many

degrees of freedom is made. Obtained results are summarized in tables and presented in graphs.

Thorough deterministic analysis is made on the basis of a model of suspended bridge, created

according to a real object, named Seri Wawasan Bridge, located in Putrajaya, Malaysia [72].

For this example the static, dynamic and sensitivity analysis is made. The geometry character-

istics of structural member are adopted in simplified form. During the load cases determining,

the dynamic effects on the bridge are intentionally omitted. Dynamic analysis is made from a

constant impulse put at the top of the pylon. The courses of vibration of selected nodes show

periodical changes of the amplitudes, which is called beat effect. From the point of view of

material fatigue, it may be treated as a disadvantageous phenomenon. Therefore, an attempt to

eliminate this phenomenon by using the damping and added mass, is made. The design sensi-

tivity response of displacements in selected nodes with respect to the cross-sectional areas of

particular elements, allows to find the most vulnerable point in the structure.

The last section of third chapter presents the numerical computations of statics, dynamics and

sensitivity of bar dome with deterministic and random parameters. After the studies, the results

obtained for truss and beam models are compared. The influence of the model division into the

beam elements to the precision of the received displacements and internal forces, is examined.

In Section 3.6, the programs to generating the nodes’ coordinates and procedures for determin-

ing the covariances matrices, are shown. Due to the symmetry of the system, the beat effect is

observed and an attempt to its elimination is made. In dynamic analysis the influence of time
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step choosing to the accuracy of yielding results, is written. The problem of time-dependent

computations for the models with repeatable values of natural frequencies is prescribed. In this

part, we present the impact of the static and dynamic sensitivity analysis results on the view of

structures work.

The guiding goal of this paper is to create a new computer tool, which combines the possibility

of making the sensitivity analysis for complex structures with many degrees of freedom with

using the deterministic and random parameters. It can have an important meaning in practical

designing of the building objects and significantly improve this process. Main scope is to op-

timize the so-called design point for the real system consisting of many elements, which have

not been carried out, yet.



12 • Introduction



Chapter 2

Deterministic Systems

2.1 Set of Lagrange’s Equation of the Second Type

The scope of this section is to formulate the equation of motion by using the expression for

total energy of the system, as the terms for kinetic and potential energy and external force work.

During analysis, the system is first discretized into a finite element mesh, then the nodal dis-

placements are computed and, consequently, the internal forces are obtained.

Let us consider u(x) = {u1, u2, u3} as the displacement vector at a arbitrary point inside

the finite element, described in the local coordinate system. If x = {x1, x2, x3} and H(x) are

assumed as the coordinate vector and the shape function matrix, respectively, the equation for

u(x) can be approximated in the form

u(x) = H(x) u∗ (2.1)

with u∗ = {u∗1, u∗2, u∗3, ..., u∗k} being the element vector of nodal displacements, described in

local coordinate system.

It is known that the strain vector can be expressed as the first derivatives of u(x) with respect to

x. The strain vector, ε = {εx , εy, εz,
√
2εxy,

√
2εyz,

√
2εzx} reads

ε(x) = du(x)

dx
= B(x) u∗ (2.2)

where the derivative of shape function matrix with respect to the local coordinates’ vector is

written symbolically as

B(x) = dH(x)

dx
(2.3)

The stress vector σ = {σx , σy, σz,
√
2σxy,

√
2σyz,

√
2σzx}, in accordance with the generalized

Hooke’s law, can be expressed as the product of the strain vector and an elastic constitutive

matrix C, i.e.

σ = Cε = CB(x)u∗ (2.4)

Specific entries of the constitutive matrix are described through via on the basis of the char-

acteristics of the structural material, such as the Young’s Modulus E and the Poisson’s ratio ν.

13
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This matrix is determined for each finite element of the system. The general forms of C are

given in [3,68], for instance.

If we assume u(x, t) is the time-dependent displacement vector of any point inside the element,

the Eq.(2.1) is rewritten in the form

u(x, t) = H(x) u∗(t) (2.5)

Implying the first and second derivatives of u(x, t) with respect to time, respectively as

u̇(x, t) = H(x) u̇∗(t), (2.6)

ü(x, t) = H(x) ü∗(t),

Each of the finite elements in the mesh, which is described in its local system, has to be now

transformed into a global coordinate system. That is, Fig. 2.1.

u∗ = T qe (2.7)

with T and qe being the transformation matrix, containing directional cosine entries, and the

nodal displacement vector of the element in the global coordinate system. For example, in the

two-dimensional (2D) case we have, Fig.2.1.

x
y

X

Y

0 q
X

q
Y

u x

uy

Figure 2.1 Local and global coordinate systems

That is written in matrix notation as, cf. Eq. (2.7)

[

ux
u y

]

=
[

cos(x, X) cos(x, Y )

cos(y, X) cos(y, Y )

] [

q
X

q
Y

]

(2.8)

Generally, for a 3D coordinate system the transformation matrix is given as

T =





cos(x, X) cos(x, Y ) cos(x, Z)

cos(y, X) cos(y, Y ) cos(y, Z)

cos(z, X) cos(z, Y ) cos(z, Z)



 (2.9)

Substituting Eq. (2.7) into Eq. (2.1) yields

u(x) = H(x) T qe (2.10)

Using the transformation matrix, the equations for stress and strain have the form

ε = B(x)Tqe (2.11)

and

σ = CB(x)Tqe (2.12)
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The vector of time-dependent displacements and its first two derivatives with respect to time,

including the Eq. (2.7), read

u(x, t) = H(x) T qe(t) (2.13)

u̇(x, t) = H(x)Tq̇e(t)

ü(x, t) = H(x)Tq̈e(t)

The goal of the section is to formulate the equation of motion in the deterministic terms on.

Hence, the total energy of the system is adopted in the form

L = Ek − Ep +W (2.14)

where Ek and Ep are kinetic and potential energy of the system, respectively, while W the

external force work. If q denotes the generalized coordinates’ vector, the set of Lagrange’s

equation of the second type can be written out as

∂L

∂q
− d

dt

(
∂L

∂q̇

)

= 0 (2.15)

To obtain the equation of motion using Eq. (2.15), the specific terms of Eq. (2.14) are needed

explicitly, and presented in the next section. The derivations of the mentioned equations in

details can be found in [63].

2.2 Equations of Motion and Equilibrium

2.2.1 Potential Energy

Potential energy for a linear elastic system can be expressed via its elastic deformation energy.

Therefore Ep is determined as an integral for capacity from stress and strain product, i.e.

Ep =
∫

V

1

2
σ
T
ε dV (2.16)

Substituting Eqs. (2.2) and (2.4) into Eq. (2.16) and using the advantage of matrices transpos-

ing laws (compare [63]) , potential energy of the considered element is obtained in the form

Epe =
1

2
u∗TKLu∗ (2.17)

with KL, being the element stiffness matrix, described in the local coordinate system and ex-

pressed by the equation

KL =
∫

V

BTCB dV (2.18)

leading to the element stiffness matrix

Ke = TTKL T (2.19)

and the element potential energy for the global system as

E∗pe =
1

2
qT
e Keqe (2.20)
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Aggregating the global stiffness matrix for the whole system from the local element stiffness

matrices, according to the equation

KG =
∑

e

Ke (2.21)

and including boundary conditions, we receive symmetric and positive definite system matrix

KG. Denoting by N the total number of the system degrees of freedom (DOF), the dimension

of KG is NxN . The potential energy of the system is consequently given by

Ep =
1

2
qTKGq (2.22)

2.2.2 Kinetic Energy

If ρ is denoted as the mass density, kinetic energy Ek, which is dependent on the velocity of a

point, can be expressed by the equation

Ek =
∫

V

1

2
ρ u̇Tu̇ dV (2.23)

Let us consider the element’s mass matrix in a local coordinate system as

ML =
∫

V

ρ HTH dV (2.24)

Using Eqs. (2.6)1, and including matrices transposing laws, Eq. (2.23) is rewritten to

Eke =
1

2
u̇∗TML u̇∗ (2.25)

with Eke being the element kinetic energy. Transposing it to the global coordinate system leads

to

E∗ke =
1

2
q̇T
e Me q̇e (2.26)

where Me is the element global mass matrix, expressed by the equation

Me = TTMLT (2.27)

The global mass matrix of the whole structure MG is the sum of mass matrices of the specific

elements, therefore the kinetic energy of the system is equal

Ek =
1

2
q̇TMG q̇ (2.28)

2.2.3 External Force Work

Let us consider work done by the external force vector F on the displacement vector u in the

form

W =
∫

V

uTF dV (2.29)



Equations of Motion and Equilibrium • 17

Assuming the vector of nodal loads written in the local coordinate system, i.e.

QL =
∫

V

HTF dV (2.30)

and using Eq. (2.1), the work for an element is determined by

We = u∗TQL (2.31)

Transforming Eq. (2.31) into the global coordinate system results in

W ∗
e = qT

e Qe (2.32)

where

Qe = TTQL (2.33)

denotes the element vector of the global nodal loads. The whole structure work is expressed by

the equation

W = qTQG (2.34)

with q and QG being the vectors of generalized coordinates and nodal loads, respectively.

2.2.4 FEM Equations of Motion

So far, the terms of potential and kinetic energy and external force work in matrix form were

determined, using the vectors of generalized coordinates — q , nodal loads — QG, and the

matrices of stiffness — KG and mass — MG. Substituting Eqs. (2.22), (2.28) and (2.34) into

Eq. (2.14) leads to the total energy of the system

L = 1

2
q̇TMGq̇− 1

2
qTKGq+ qTQG (2.35)

Partial derivatives of L with respect to q and q̇ and taking the advantage of matrices KG and

MG symmetry, can be expressed respectively

∂L

∂q
= −KGq+QG (2.36)

and

∂L

∂q̇
= MGq̇ (2.37)

Differentiation Eq. (2.37) with respect to time t , yields

d

dt

(
∂L

∂q̇

)

= MGq̈ (2.38)

Including Eqs. (2.36) and (2.38) into Eq. (2.15) and after summing up, the set of the equations

of motion for the whole system is received

MGq̈+KGq = QG (2.39)
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Entering the damping effects into the analysis with D being the damping matrix, Eq. (2.39)

takes form

MGq̈+ Dq̇+KGq = QG(t) (2.40)

For the complex structures with many degrees of freedom (MDOF), it can not be used the same

model of damping as for the systems with one DOF. Therefore, during the analysis of complex

systems, the Rayleigh’s damping matrix is taken into account, which is assumed as a linear

combination of mass and stiffness terms

D = αM+ βK (2.41)

with α and β being the coefficients obtained in an experimental way. More information about

complying the damping effects in data processing is presented in section 2.4.

2.2.5 Equilibrium Equations

Statics may be treated as the special case of the dynamics, where the inertial and damping effects

are neglected because of time-independent vector of generalized coordinated. According to that

the set of equations of motion, describing the equilibrium of the whole system, is rewritten in

matrix recording as

KGq−QG = 0 (2.42)

Multiplying Eq. (2.40) by the inverse of stiffness matrix leads to obtaining an unknown vector

of generalized coordinates

q = K−1G QG (2.43)

with N being the total number degrees of freedom. The specific terms in Eq. (2.40) have the

following dimensions: N × N for the stiffness matrix KG and N × 1 for the both vectors of the

generalized (nodal) coordinates q and external loading QG.

2.3 Finite Elements

2.3.1 Truss Element

Let us consider a 2D truss element presented in Fig.(2.2.), where only axial forces are taken

into account.

The displacement u(x) at any point inside the element is adopted as

ux(x) = α1 + α2x (2.44)

or, in matrix notation, as

ux(x) =
[

1 x
]
[

α1

α2

]

(2.45)

Using Eq. (2.44) we can write the values of the nodal displacements as

uix = u(0) = α1

u j
x = u(L) = α1 + Lα2
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Figure 2.2 2D truss element

That is

[
uix

u
j
x

]

=
[

1 0

0 L

] [

α1

α2

]

(2.46)

or, in the concise form

u∗ = Aα (2.47)

and solved for α, yields

α = A−1u∗ (2.48)

Using Eq. (2.46), the above equation takes the form

[

α1

α2

]

= 1

L

[

L 0

−1 1

] [
uix

u
j
x

]

(2.49)

Substituting Eq. (2.49) into Eq. (2.45) we get

ux(x) = H(x) u∗ (2.50)

where

H(x) =
[

1 x
] 1

L

[

L 0

−1 1

]

(2.51)

is the shape function matrix for the element, while the matrix B(x) being the first derivative

H(x) with respect to x, is equal to, cf. Eq. (2.3)

B(x) =
[

0 1
] 1

L

[

L 0

−1 1

]

= 1

L

[

−1 1
]

(2.52)

Using Eq. (2.4), the expression for the stress vector can now be written as

σ = E
1

L

[

−1 1
]
[
uix

u
j
x

]

(2.53)

For the truss element with constant cross-sectional area A, Eq. (2.18) can be rewritten as

KL = BTCBAL (2.54)
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Using Eqs. (2.52) and C = E , Eq. (2.54) for the local stiffness matrix for the 2D truss element

is expressed as

KL =
1

L

[

−1
1

]

E
1

L

[

−1 1
]

AL = AE

L

[

1 −1
−1 1

]

(2.55)

In the three-dimensional (3D) truss element we are consider three translational displacements,

and corresponding them internal forces that are presented in Fig. 2.3.

x

L

u  ,Nx

u  ,Tz z
i

u  ,Ty y

y

z

u  ,Nx

u  ,Tz z

j

u  ,Ty y

i

j

EA

i i

i

i i j

j j

jj

Figure 2.3 3D truss element in the local coordinate system

Consequently, to the 2D truss element, the stiffness matrix for a 3D one, according to Fig. 2.3.

is developed as

AE

L











1 0 0 −1 0 0

0 0 0 0 0

0 0 0 0

1 0 0

symm. 0 0

0






















uix
uiy
uiz

u
j
x

u
j
y

u
j
z












=











N i

0

0

N j

0

0











(2.56)

or, in matrix notation, as

KLu∗ = QL (2.57)

where KL and QL are the stiffness matrix and nodal load vector described in the local coordinate

system.

2.3.2 Beam Element

The 2D beam element can be formulated by the superposition of the truss and bending-only-

beam elements. First, we designate the local stiffness matrix for the z-bending element, Fig.

2.4, then we add the previously appointed matrix for the 2D truss element, cf. Eq. (2.56).

The vertical displacement at any point inside the element is assumed as

u y(x) = α1 + α2x + α3x
2 + α4x

3 (2.58)

or, in matrix notation, as

u y(x) =
[

1 x x2 x3
]







α1

α2

α3

α4







(2.59)
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Figure 2.4 Local displacements in z-bending element

The slope at the point is defined as the first derivative of the displacement u y(x) with respect to

x as

ϕz =
du y(x)

dx
= α2 + 2α3x + 3α4x

2 (2.60)

Approving the boundary conditions with accordance to the Fig. 2.4, we have

uiy = u y(0) = α1,

ϕi
z = du y

dx

∣
∣
∣
∣
x=0

= α2,

u j
y = u y(L) = α1 + Lα2 + L2α3 + L3α4,

ϕ j
z = du y

dx

∣
∣
∣
∣
x=L

= α2 + 2Lα3 + 3L2α4

or, in matrix notation

u∗ = Aα =







1 0 0 0

0 1 0 0

1 L L2 L3

0 1 2L 3L2













α1

α2

α3

α4







(2.61)

These equations are solved for α to get

α = A−1u∗ =










1 0 0 0

0 1 0 0

− 3
L2 − 2

L
3
L2 − 1

L

2
L3

1
L2 − 2

L3
1
L2

















uiy
ϕi
z

u
j
y

ϕ
j
z








(2.62)

that, substituted into Eq. (2.61), leads to the shape function matrix for the bending element of

the form

u y(x) =
[

1 x x2 x3
]










1 0 0 0

0 1 0 0

− 3
L2 − 2

L
3
L2 − 1

L

2
L3

1
L2 − 2

L3
1
L2

















uiy
ϕi
z

u
j
y

ϕ
j
z







= H(x)u∗ (2.63)
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We treat the vector of nodal forces by means of the local stiffness matrix and the nodal displace-

ment vector as

QL =
{

T i
y M i

z T
j
y M

j
z

}

(2.64)

Notations of the nodal forces presented in Eq.(2.65) are assumed on the basis on Fig. 2.5.

i
T

zM

y

L

z

y

x

i j

i

j

M
j

Ty

z

Figure 2.5 Nodal forces in z-bending element

Applying the Euler’s equation and differential relationship between external forces and dis-

placements, the equations for bending moments and shear forces of the z-bending element are

received as

Mz(x) = −E Jz
d2u y(x)

dx2
(2.65)

and

Ty(x) =
dMz(x)

dx
= −E Jz

d3u y(x)

dx3
(2.66)

where Jz is the moment of inertia of the element’s cross-section. The first, second and third

derivatives of the displacement u y(x) with respect to x , are expressed respectively, by

du y(x)

dx
=

[

0 1 2x 3x2
]

A−1u∗

d2u y(x)

dx2
=

[

0 0 2 6x
]

A−1u∗ (2.67)

d3u y(x)

dx3
=

[

0 0 0 6
]

A−1u∗
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Using boundary conditions, the values of nodal forces for the bending element are obtained in

the form

M i
z = −E Jz

d2u y(x)

dx2

∣
∣
∣
∣
x=0

= −E Jz
[

0 0 2 0
]

A−1u∗

= E Jz

[
6
L2

4
L
− 6

L2
2
L

]

u∗

M j
z = E Jz

d2u y(x)

dx2

∣
∣
∣
∣
x=L

= E Jz
[

0 0 2 6L
]

A−1u∗

= E Jz

[
6
L2

2
L
− 6

L2
4
L

]

u∗ (2.68)

T i
y = E Jz

d3u y(x)

dx3

∣
∣
∣
∣
x=0

= E Jz
[

0 0 0 6
]

A−1u∗

= E Jz

[
12
L3

6
L2 − 12

L3
6
L2

]

u∗

T j
y = −E Jz

d3u y(x)

dx3

∣
∣
∣
∣
x=L

= −E Jz
[

0 0 0 6
]

A−1u∗

= E Jz

[

− 12
L3 − 6

L2
12
L3 − 6

L2

]

u∗

Substituting the vectors obtained in Eqs.(2.69) into Eq.(2.65), the local stiffness matrix for the

z-bending element is determined








T i
y

M i
z

T
j
y

M
j
z







= E Jz











12
L3

6
L2 − 12

L3
6
L2

4
L
− 6

L2
2
L

symm.
12
L3 − 6

L2

4
L


















uiy
ϕi
z

u
j
y

ϕ
j
z








(2.69)

that is,

QL = KL ∗ u∗ (2.70)

If we add the longitudinal displacements and the normal forces to the presented z-bending

element, a 2D beam element is obtained (see Figs. 2.6 and 2.7).
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Figure 2.6 2D beam element -displacements
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Its local stiffness matrix is formed by the superposition of the matrices designated for the 2D

truss and z-bending elements.












N i

T i
y

M i
z

N j

T
j
y

M
j
z












=

















AE
L

0 0 − AE
L

0 0

12E Jz
L3

6E Jz
L2 0 −12E Jz

L3

6E Jz
L2

4E Jz
L

0 −6E Jz
L2

2E Jz
L

AE
L

0 0

symm.
12E Jz
L3 −6E Jz

L2

4E Jz
L




























uix
uiy
ϕi
z

u
j
x

u
j
y

ϕ
j
z












(2.71)

All forces that are considered in 2D beam element are presented on Fig. 2.7.
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Figure 2.7 2D beam element - forces

Analogically to the z-bending element, presented in Figs.2.4 and 2.5, the y-bending one is

formed. Fig. 2.8 shows the displacements in the y-bending element, while Fig. 2.9, corre-

sponding them nodal forces.
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Figure 2.8 Local displacements in y-bending element

The local stiffness matrix for the y-bending element is made on the basis of the z-bending one
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and after including the boundary conditions is expressed in the form








T i
z

M i
y

T
j
z

M
j
y







= E Jy











12
L3 − 6

L2 − 12
L3 − 6

L2

4
L

6
L2

2
L

symm.
12
L3

6
L2

4
L


















uiz
ϕi
y

u
j
z

ϕ
j
y








(2.72)

The notations of the nodal forces in Eq. (2.72) are adopted according to the Fig. 2.9
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Figure 2.9 Nodal forces in y-bending element

In 3D beam element, each of two nodal points has the 6 DOFs - three translational components

and three rotational ones, and, correspondingly, 12 nodal load components, Fig. 2.11. Before,

we will determine its local stiffness matrix, one more element must be defined - that includes

the torsion moments, Fig. 2.10.
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Figure 2.10 Torsion element

The local stiffness matrix for the torsion element is obtained analogically to the 2D truss element

ones, and reads

[
M i

x

M
j
x

]

= GJx

L

[
1 −1

−1 1

]
[

ϕi
x

ϕ
j
x

]

(2.73)

with G being the bulk modulus equals

G = E

2(1+ ν)
(2.74)

where E and ν are the Young’s Modulus and Poisson’s ratio of the structural material, respec-

tively.

The stiffness matrix for the 3D beam element is formulated by the superposition of the men-

tioned four types of elements: truss, torsion, y- and z-bending.
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Figure 2.11 3D beam element

For the nodal displacement vector u∗ = {uix , uiy, uiz, ϕ
j
x , ϕ

j
y , ϕ

j
z } written for the element from

fig. 2.11 and corresponding to it nodal force vector QL = {N i , T i
y , T

i
z , M

j
x , M

j
y , M

j
z }, the local

stiffness matrix can be expressed as
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
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L3 0
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0
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












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
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






2.3.3 Shell Element

A shell element is created by superposing the plate and membrane elements, symbolically as

+ =

plate el. membrane el. shell el.

Figure 2.12 Shell element

Each node in the shell element has 6 DOFs - 3 translational components and 3 rotational ones.

Accordingly, when a quadrilateral shell element is considered, the total number of degrees of

freedom are equal 24 — specific forms of shell elements can be found in [3,68], for instance.
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2.4 Damping Effects

Every object is exposed to many external factors, which have influence on the nodal displace-

ments and consequently, the internal forces in a finite element. Contemporary research and

modern numerical codes aim to simulate real work of the structure most exactly. Therefore, the

considered system may be designed optimally, say, maximum of bearing capacity at minimum

cost of production and realization. One of problems that are encountered by creating models of

real objects is how to include damping effects in the analysis.

If the system with one degree of freedom is considered, it is not a problem to take this effect

into account. There are a few types of damping models for such a kind of structures, described

in the world literature. For example, the viscous, hysteretic and coulomb damping can be found

in [57]. The situation becomes more complicated when we consider a complex structure with

many degrees of freedom. The damping effect in a real object is caused by several different

factors, known as the dry friction, such as hydrodynamics, aerodynamics, thermal effects etc. It

is unavailable to use all the above mentioned models for including damping effects. The sim-

plest damping model in computational implementation is described by the Rayleigh’s matrix D

which is treated as linear combination of mass and stiffness terms.

The goal of this section, is incorporating the damping to the numerical program. During the

data processing a modal damping coefficient λ is used. It can be easily obtained by rewriting

the equation of motion in terms of modal analysis. With N denoting the number of normalized

mode shapes, the vector of generalized coordinates can be adopted in the form

q = yz (2.75)

where z = z1, z2, ..., zN and y = [y1, y2, ..., yN ] are the normal (modal) coordinate vector

and the eigenvector matrix, respectively. The latter is received as the solution of generalized

eigenproblem expressed by the equation

(KG −�MG)y = 0 (2.76)

where KG and MG are the previously obtained stiffness and mass matrices, while � is a diag-

onal matrix with entries being the squares of natural frequencies, amount in the finite element

implementation

� = ⌈ω2
(1), ω

2
(2), ..., ω

2
(N )⌋ (2.77)

Substituting Eqs. (2.75) and their first and second derivatives with respect to time into Eq.

(2.40) and premultiplying by yT we arrive at

yTMGyz̈+ yTDyż+ yTKGyz = yTQG (2.78)

According to [3], when the mass orthonormality and stiffness orthogonality conditions are as-

sumed as

yTMy = I, yTKy = � (2.79)

with I being the identity matrix, an uncoupled system of equations is obtained in the form

z̈(n) + 2λ(n)ω(n) ż(n) + ω2
(n)z(n) = yT(n)Q(n) (2.80)
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where the following expression is adopted

D(n) = yT(n)Dy(n) = 2λ(n)ω(n) (2.81)

In Eqs. (2.80) and (2.81) the symbols z(n), λ(n) and ω(n) denote the normal displacement, modal

damping coefficient and natural frequency of the system corresponding to the n-th mode shape.

In order to get the λ(n), the Rayleigh’s damping matrix is considered. Side-wise postmultiplying

Eq. (2.41) by y and premultiplying by yT lead to

yTDy = αyTMGy+ βyTKGy (2.82)

Using conditions (2.79), the damping related to the n-th mode shape is received as

D(n) = yT(n)Dy(n) = α + βω2
(n) (2.83)

From Eqs. (2.81) and (2.83) we obtain the expression for the n-th modal damping coefficient

λ(n) =
1

2

(
α

ω(n)

+ βω(n)

)

(2.84)

Let ω̄ be the value of the natural frequency which leads to the minimum value of the modal

damping coefficient denoted as λ̄. The equation for α and β can be rewritten in the form

α = λ̄ω̄, and β = λ̄

ω̄
(2.85)

Substituting Eqs. (2.85) into (2.84)

λ(n) =
λ̄

2

(
T(n)

T̄
+ T̄

T(n)

)

(2.86)

where T(n) and T̄ are the periods of the system’s vibrations corresponding to the natural frequen-

cies ω(n) and ω̄. In this section λ̄ is the same damping factor as the input data in the numerical

processing. On its basis, during the data analysis, the particular coefficients λ(n) related to the

n-th mode shape are computed.

2.5 Static and Dynamic Sensitivity

2.5.1 Design Sensitivity Analysis

Structural design sensitivity analysis is a field which studies the influence of the design vari-

ables’ changes to the structural response limited by boundary conditions. Displacements, buck-

ling loads, stresses or natural frequencies in specific nodes of the system may be treated as the

measures of the structural response, while cross-sectional areas of main elements, thickness of

the plate or shell, Young’s Modulus, mass density etc. can be considered as design variables. In

literature there are many papers about static design sensitivity for 1D and 2D systems, therefore

this issue can be considered to be thoroughly discussed. But opposing it, the dynamic design

sensitivity for bodies which can be deformed needs to be developed. In this chapter, this prob-

lem is examined by using numerical analysis with direct differentiation and adjoint variable

methods.
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Let us assume that τ, τ ǫ [0, T(ba)] indicates the time variable and b = {ba}, a = 1, 2, ..., A,

the design variable vector. According to [25,35], for multi-degree-of freedom (MDOF) systems

the structural response can be defined by the functional

φ =
∫

T(ba)

0

G [q(τ, b), b] dτ (2.87)

where T(ba) is the terminal time function assumed via

θ [q(T, b), q̇(T, b), b] = 0 (2.88)

Additionally, q(τ, b) presents the generalized coordinate vector, q(τ, b) = {qα(τ, ba)}, α =
1, 2, ..., N . For the sake of presentation transparency, the summation notation is included from

now on. On this basis, the mass, damping and stiffness matrices are rewritten to the M(b) =
[Mαβ(ba)], D(b) = [Dαβ(ba)], K(b) = [Kαβ(ba)], respectively, and load vector of the system

is Q(τ, b) = {Qα(τ, ba)}, where α, β = 1, 2, ..., N . The equations of motion (2.40) takes then

the general form

Mαβ(ba)q̈β(τ, ba)+ Dαβ(ba)q̇β(τ, ba)+ Kαβ(ba)qβ(τ, ba) = Qα(τ, ba) (2.89)

with the initial conditions being prescribed as

q(0, b) = q0(b), q̇(0, b) = q̇0(b) (2.90)

The problems of time-independent and time-dependent sensitivity will be analyzed below, in

the next sections constantly.

2.5.2 Static Sensitivity

In the statics case, the vectors of generalized coordinates and external loads are time-independent.

Therefore, the structural response of the system is reduced to

φ = G[qα(ba), ba] (2.91)

with the equilibrium equations being expressed in the form

Kαβ(ba)qβ(ba) = Qα(ba) (2.92)

The static sensitivity analysis aims to get dφ/dba , which describes the change in the struc-

tural response functional with respect to the design variables. Let us assume that Kαβ(ba) and

Qα(ba) are twice times continuously differentiable with respect to ba , so do qα(ba) . The chain

rule of differentiation leads to

dφ

dba
= ∂G

∂ba
+ ∂G

∂qα

dqα

dba
, α = 1, 2, ..., N ; a = 1, 2, ..., A (2.93)

The partial derivatives ∂G/∂ba and ∂G/∂qα are known, because of G being an explicit function

of ba and qα. The goal of the following considerations is to obtain dqα/dba , so all the terms in

Eq. (2.92) are differentiated with respect to ba to obtain

∂Kαβ

∂ba
qβ + Kαβ

dqβ

dba
= ∂Qα

∂ba
(2.94)
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For further derivation the direct differentiation method (DDM) [35] is used. Due to symmetry

of the stiffness matrix, Kαβ inverted can also be written as Kαβ
−1. All members of the Eq.

(2.94) are then multiplied by Kαβ
−1 to received

K−1αβ

∂Kαγ

∂ba
qγ +

dqβ

dba
= K−1αβ

∂Qα

∂ba
, α, β, γ = 1, 2, ..., N (2.95)

or, in terms of the displacement sensitivities, as

dqβ

dba
= K−1αβ

(
∂Qα

∂ba
− ∂Kαγ

∂ba
qγ

)

(2.96)

Substituting Eq. (2.96) into Eq. (2.93) yields

dφ

dba
= ∂G

∂ba
+ ∂G

∂qβ

K−1αβ

(
∂Qα

∂ba
− ∂Kαγ

∂ba
qγ

)

(2.97)

Instead of the DDM presented above, we can formulate the static sensitivity problem by using

the so-called adjoint system method (ASM) as an alternative. To this end we define an adjoint

vector of the form

λα = K−1αβ

∂G

∂qβ

(2.98)

so that Eq. (2.97) becomes

dφ

dba
= ∂G

∂ba
+ λα

(
∂Qα

∂ba
− ∂Kαγ

∂ba
qγ

)

(2.99)

where the adjoint vector is solved for from the adjoint equations system

Kαβλα =
∂G

∂qβ

(2.100)

2.5.3 Unit Impulse and Dirac-δ Distribution

For better understanding the mathematical derivations presented in Sections from 2.5.4 to 2.5.6.,

this section will deal with Dirac-δ distribution. In the sense of computational engineering, it is

considered as a unit impulse being a significant element in system dynamics. From the view-

point of mathematical analysis, the Dirac-δ Distribution is not differentiated as an ordinary

function, because its derivative is equal 0 in the variable range x 6= 0, while for point x = 0 it

is undetermined [26,27,35].

To illustrate Dirac-δ distribution, let us consider the piecewise function f (x), mathematically

written as

f (x) =











1

x1
for x ∈

[−x1
2

,
x1

2

]

0 for x 6= ∈
[−x1

2
,
x1

2

]
(2.101)

that is presented in Fig. 2.13.
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x

-

1

22
x1 x1

x1

f (x)

Figure 2.13 The piecewise function

Geometrically, f (x) may describe the rectangle of the base x1 and hight 1/x1. The area of

the rectangle from Fig. 2.13, specified by f (x), is the product of the height and base length.

Regardless the value of x1, it will be always equal 1. The base length of the rectangle is pulse

duration. When x1 approaches 0, the figure’s height tends to infinity, and then, function f (x)

tends to δ(x), which can be shown by Eq. (2.102).

δ(x) = lim
x1→0

f (x)

{

∞ for x = 0

0 for x 6= 0
(2.102)

Due to the constancy of the integral of the function δ(x) [26,27,35], the area of the figure for a

small positive parameter ε is expressed by the equation

∫ ε

−ε

δ(x)dx = lim
x1→0

∫ x1/2

−x1/2
f (x)dx = lim

x1→0

∫ x1/2

−x1/2

1

x1
dx = lim

x1→0

1

x1

∫ x1/2

−x1/2
dx = 1 (2.103)

When function f (x) is not symmetric with respect to the line given by the equation x = 0, but

to x = x0 one, we change the variable x into (x0 − x) [26,27,35], and then Eq. (2.102) takes

the form

δ(x0 − x) =
{

∞ for x = x0
0 for x 6= x0

(2.104)

and the integral given by the Eq. (2.103) is rewritten to the expression

∫ x0+ε

x0−ε

δ(x0 − x)dx = 1 (2.105)

Due to a nature of the Dirac-δ distribution, this type of generalized function is regarded to be

specified and derived. Therefore, on the basis of [26,27,35], Dirac-δ is defined by the equation

∫ +∞

−∞
g(x)δ(x0 − x)dx = g(x0) (2.106)

where the test function g(x) is continuous and differential at point x = x0 and it takes zero

value outside a prescribed interval. Integral in Eq. (2.106) takes the value of the test function

at point x = x0. Because of the δ(x)-parity, cf. Eqs. (2.105) and (2.106), the below equalities

hold true

δ(x − x0) = δ(x0 − x) (2.107)

δ(x) = δ(−x)
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The convolution given by the Eq. (2.106) is symmetric with respect to the generalized function

g(x) and δ(x − x0) [26,27,35]. Adopting dummy variables x and ς and putting expression

x = x0 − ς into Eq. (2.106) we obtain

g(x0) = −
∫ +∞

−∞
g(x0 − ς)δ(ς)dς =

∫ +∞

−∞
g(x0 − x)δ(x)dx (2.108)

Therefore, we can write
∫ +∞

−∞
g(x0 − x)δ(x)dx =

∫ +∞

−∞
g(x)δ(x0 − x)dx (2.109)

When x0 = 0, we get

∫ +∞

−∞
g(x)δ(−x)dx =

∫ +∞

−∞
g(−x)δ(x)dx =

∫ +∞

−∞
g(x)δ(x)dx = g(0) (2.110)

In the conventional sense of mathematical analysis, the derivative of δ(x) is equal 0 with x 6= 0,

for x = 0 it does not uniquely exist. However, we can define the derivative of δ(x) in an integral

form as
∫ +∞

−∞
g(x)δ′(x)dx = −

∫ +∞

−∞
g′(x)δ(x)dx (2.111)

that will be used in the following form for

∫ +∞

−∞
g(x)δ′(x)dx = −g′(0) (2.112)

The Dirac-δ is a significant element in the discrete data processing in numerical methods. When

entering data into a program, the continuous signals are previously discretized to the signals

being determined at the so-called sampling points γ(n), n = 0, 1, ... of discrete variable γ

[26,27,35]. The continuous signals are divided into equal sampling intervals 1γn = 1γ be-

tween given γ(n). Therefore we have

γn = n1γ ; n = 0, 1, ... (2.113)

Using the concept of zero-order hold,[26,27,35], we can express

fn = f (γn) = f (n1γ ); γn ǫ [n1γ, (n + 1)1γ ], n = 0, 1, ... (2.114)

where f (γn) is the n-th value of the sample function being generated from the output signal

f (γ ). Due to the continuity of f (γ ) function at points γn , the value of sample function at point

n can be written by Dirac-δ distribution.

Applying an engineering, staircase implementation, δ(x) can be interpreted simply by the well-

known Kronecker delta δjn (see [26,27,35])

δjn = δ( j − n)







1 for j = n

j, n = 0, 1, ...

0 for j 6= n

(2.115)

Therefore, the convolution given by the Eq. (2.106) takes the form

fn =
∑

j

f ( j)δ(n − j) =
∑

j

f jδnj ; n, j = 0, 1, ... (2.116)
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2.5.4 Eigenvalue Sensitivity

Let us consider a special example of equations of motion. Omitting the damping coefficients

and external loads, Eq. (2.87) takes the form of an undamped free vibration system as

Mαβ(ba)q̈β(ba)+ Kαβ(ba)qβ(ba) = 0 (2.117)

We are going to find β-th eigenvalue ξ(β)(b) = ξ(β)(ba) = ω2
(β). It should be noted that the

indexes in round bracket as (β) are not subject to the summation convention. Let us adopted

that y(b) = {yαβ(ba)} is the eigenvector matrix (compare Section 2.4). Assuming that

φ(β) = ξ(β)(ba); β = 1, 2, ..., N (2.118)

The Kαβ-orthogonality and Mαβ-orthonormality conditions (cf. Eq. (2.79)) are now rewritten

to the form

yTαγ Kαβ yβη = �(ᾱβ̄)δγ η

yTαγ Mαβ yβη = δγ η (2.119)

with α, β, γ, η = 1, 2, ..., N and�(ᾱβ̄) being the diagonal matrix of N eigenvalues. The symbol

δγ η used in Eqs. (2.119) is the Kroneker delta, described in details in Section 2.5.3. Pre-

multiplying Eq. (2.119)1 by yαβ gives

Kαβ yβγ = �(ᾱβ̄)yαηδγ η (2.120)

Substituting Eq. (2.119)2 to Eq. (2.120), leads to

Kαβ yβγ = �(ᾱβ̄)Mαβ yβγ (2.121)

Because we are aiming to the design sensitivity of the β-th eigenvalue and we consider un-

damped free vibration system, Eq. (2.121) is rewritten as

Kαβ(ba) yβγ (ba) = ξ(β)(ba)Mαβ(ba)yβγ (ba) (2.122)

Now, the structural design sensitivity for the eigenvalue response of the generalized eigenprob-

lem will be derived. Differentiating both sides of Eq. (2.122) with respect to design variable,

leads to

∂Kαβ

∂ba
yβγ + Kαβ

dyβγ

dba
= dξ(β)

dba
Mαβ yβγ + ξ(β)

∂Mαβ

∂ba
yβγ + ξ(β)Mαβ

dyβγ

dba
(2.123)

where α, β, γ = 1, 2, .., N , a = 1, 2, ..., A. Eq. (2.123) is then rewritten to get

dξ(β)

dba
Mαβ yβγ =

(
∂Kαβ

∂ba
− ξ(β)

∂Mαβ

∂ba

)

yβγ +
(

Kαβ − ξ(β)Mαβ

)
dyβγ

dba
(2.124)

that, side-wise multiplied by the transposed eigenvector matrix, leads to

dξ(β)

dba
yTαηMαβ yβγ = yTαη

[(
∂Kαβ

∂ba
− ξ(β)

∂Mαβ

∂ba

)

yβγ +
(

Kαβ − ξ(β)Mαβ

)
dyβγ

dba

]

(2.125)

Using the orthonormality condition of the mass matrix, Eq. (2.119)2 gives

dξ(β)

dba
δηγ = yTαη

(
∂Kαβ

∂ba
− ξ(β)

∂Mαβ

∂ba

)

yβγ + yTαη

(

Kαβ − ξ(β)Mαβ

)
dyβγ

dba
(2.126)

Eq. (2.122) is firstly post-multiplying and then pre-multiplying by the transposed eigenvectors

matrix, to obtain

yTβγ Kαβ = ξ(β)y
T
βγ Mαβ (2.127)

According to that, Eq. (2.126) is converted to the formula

dξ(β)

dba
δηγ = yTαη

(
∂Kαβ

∂ba
− ξ(β)

∂Mαβ

∂ba

)

yβγ (2.128)
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2.5.5 Time Interval Sensitivity

In this section, we aiming to obtain the dynamic sensitivity, when time is considered on a given

interval. Let us assumed that the matrices Kαβ , Mαβ and Dαβ and the vector of nodal loads Qα

are twice continuously differentiable with respect to the ba and additionally the mass matrix

is nonsingular. Consequently to that qα(τ, ba) is twice times continuously differentiable with

respect to design variable. In this case we consider the structural response given by the Eq.

(2.87). Differentiating functional with respect to design variable with applying the Leibniz rule

yields to

dφ

dba
=

∫
T(ba)

0

dG [q(τ, b), b]

dba
dτ + G

∣
∣
∣
∣
τ=T

dT

dba
(2.129)

The second term of right-side of Eq. (2.129) results from differentiation under the integral. The

chain rule of differentiation gives

dφ

dba
= G

∣
∣
∣
∣
τ=T

dT

dba
+

∫
T(ba)

0

(
∂G

∂ba
+ ∂G

∂qα

dqα

dba

)

dτ (2.130)

Differentiating the terminal-time condition, defined by Eq. (2.88) with respect to the design

variable ba leads to

∂θ [qβ(T, ba), q̇β(T, ba), ba]

∂ba
= ∂θ

∂ba
+ ∂θ

∂qβ

dqβ

dba
+ ∂θ

∂ q̇β

dq̇β

dba
= 0 (2.131)

It should be observed that the symbol d·/dba mean the absolutely partial derivative with respect

to ba . Because T (ba) is also an explicit function of the design variable, the first and second

derivatives of generalized coordinate vector with respect to ba are expressed as

dqβ(T )

dba
=

(
∂qβ(T )

∂ba
+ ∂qβ(T )

∂T

dT

dba

)

(2.132)

and

dq̇β(T )

dba
=

(
∂q̇β(T )

∂ba
+ ∂ q̇β(T )

∂T

dT

dba

)

(2.133)

Substituting Egs. (2.132) and (2.133) into Eq. (2.131) we get

∂θ

∂ba
+ ∂θ

∂qα

[
∂qα

∂ba
+ ∂qα

∂T

dT

dba

]

τ=T
+ ∂θ

∂ q̇α

[
∂ q̇α

∂ba
+ ∂ q̇α

∂T

dT

dba

]

τ=T

= ∂θ

∂ba
+

[
∂θ

∂qα

∂qα

∂ba
+ ∂θ

∂ q̇α

∂ q̇α

∂ba

]

τ=T
+

(
∂θ

∂qα

∂qα

∂T
+ ∂θ

∂q̇α

∂ q̇α

∂T

)
dT

dba

= ∂θ

∂ba
+

[
∂θ

∂qα

∂qα

∂ba
+ ∂θ

∂ q̇α

∂ q̇α

∂ba

]

τ=T
+ θ̇

dT

dba
= 0 (2.134)

where

θ̇ = ∂θ

∂qα

∂qα

∂T
+ ∂θ

∂ q̇α

∂ q̇α

∂T
(2.135)

Eq. (2.134) is solved for dT
dba

, to get

dT

dba
= −1

θ̇

[
∂θ

∂ba
+ ∂θ

∂qα

∂qα

∂ba
+ ∂θ

∂q̇α

∂ q̇α

∂ba

]

τ=T
(2.136)
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Substituting Eq. (2.136) into Eq. (2.130) yields to

dφ

dba
= −G

θ̇

[
∂θ

∂ba
+ ∂θ

∂qα

∂qα

∂ba
+ ∂θ

∂q̇α

∂ q̇α

∂ba

]

τ=T
+

∫
T(ba)

0

(
∂G

∂ba
+ ∂G

∂qα

dqα

dba

)

dτ (2.137)

The derivatives dqα/dba and dq̇α/dba are still unknown, therefore removing them by adjoint

variable method is the next step of the following consideration. To do this, both sides of Eq.

(2.89) are first differentiated with respect to ba to get

∂Mαβ

∂ba
q̈β + Mαβ

dq̈β

dba
+ ∂Dαβ

∂ba
q̇β + Dαβ

dq̇β

dba
+ ∂Kαβ

∂ba
qβ + Kαβ

dqβ

dba
= ∂Qα

∂ba
(2.138)

and then they are postmultiplied by the adjoint vector λα(τ )
(

∂Mαβ

∂ba
q̈β +Mαβ

dq̈β

dba
+ ∂Dαβ

∂ba
q̇β + Dαβ

dq̇β

dba
+ ∂Kαβ

∂ba
qβ + Kαβ

dqβ

dba

)

λα(τ )

= ∂Qα

∂ba
λα(τ ) (2.139)

and integrated over the time domain [ 0, T ] to obtain
∫ T

0

(
∂Mαβ

∂ba
q̈βλα +Mαβλα

dq̈β

dba
+ ∂Dαβ

∂ba
q̇βλα + Dαβλα

dq̇β

dba
+ ∂Kαβ

∂ba
qβλα

+ Kαβλα

dqβ

dba

)

dτ =
∫ T

0

∂Qα

∂ba
λαdτ (2.140)

It is known that the integral from the sum of expressions is equal to the sum of the integrals.

Therefore the separate terms of the above equation are first considered and then they are com-

posed as a whole formula. We start form the term involving dq̇α/dba and integrate it by parts

with respect to τ , which gives

∫ T

0

Dαβλα

dq̇β

dba
dτ = Dαβλα

dqβ

dba

∣
∣
∣
∣
τ=T

−
∫ T

0

Dαβ λ̇α

dqβ

dba
dτ (2.141)

Next, the term having dq̈α/dba is twice integrated by parts with respect to τ . The first integral

is equal

∫ T

0

Mαβλα

dq̈β

dba
dτ = Mαβλα

dq̇β

dba

∣
∣
∣
∣
τ=T

−
∫ T

0

Mαβ λ̇α

dq̇β

dba
dτ (2.142)

and the second is written as
∫ T

0

Mαβ λ̇α

dq̇β

dba
dτ = Mαβ λ̇α

dqβ

dba

∣
∣
∣
∣
τ=T

−
∫ T

0

Mαβ λ̈α

dqβ

dba
dτ (2.143)

so that, Eq. (2.142) takes the form

∫ T

0

Mαβλα

dq̈β

dba
dτ = Mαβλα

dq̇β

dba

∣
∣
∣
∣
τ=T

− Mαβ λ̇α

dqβ

dba

∣
∣
∣
∣
τ=T

+
∫ T

0

Mαβ λ̈α

dqβ

dba
dτ (2.144)

Substituting Eqs. (2.141) and (2.144) into Eq. (2.140) and rearranging all the terms, we obtain

− (Mαβ λ̇α − Dαβλα)
dqβ

dba

∣
∣
∣
∣
τ=T

+
∫ T

0

(Mαβ λ̈α − Dαβ λ̇α + Kαβλα)
dqβ

dba
dτ

+ Mαβλα

dq̇β

dba

∣
∣
∣
∣
τ=T

=
∫ T

0

λα

(
∂Qα

∂ba
− ∂Mαβ

∂ba
q̈β −

∂Dαβ

∂ba
q̇β −

∂Kαβ

∂ba
qβ

)

dτ (2.145)
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Comparing the terms including dqα/dba at τ ∈ [0, T ] of the second term under integration

of Eq. (2.145) and of the last term under integration of Eq.(2.137), we arrive at the adjoint

equations system of the form

∂G

∂qβ

= Mβα(ba)λ̈α(τ )− Dβα(ba)λ̇α(τ )+ Kβα(ba)λα(τ ) (2.146)

Further comparing the term involving dqα/dba and dq̇α/dba at τ = T from Eq. (2.145) and

Eq.(2.137), the terminal conditions for the adjoint generalized coordinates and velocities are

received in the form

Mβαλα(T ) = −G

θ̇

∂θ

∂q̇β

Mβαλ̇α(T ) = Dβαλα(T )+ G

θ̇

∂θ

∂qβ

(2.147)

Introducing Eqs. (2.146) and (2.147) into Eq. (2.145) leads to

− G

θ̇

∂θ

∂q̇β

dq̇β

dba

∣
∣
∣
∣
τ=T

− G

θ̇

∂θ

∂qβ

dqβ

dba

∣
∣
∣
∣
τ=T

+
∫ T

0

∂G

∂qβ

dqβ

dba
dτ

=
∫ T

0

λα

(
∂Qα

∂ba
− ∂Mαβ

∂ba
q̈β −

∂Dαβ

∂ba
q̇β −

∂Kαβ

∂ba
qβ

)

dτ (2.148)

or, after rearranging the terms

− G

θ̇

[
∂θ

∂ q̇β

dq̇β

dba
+ ∂θ

∂qβ

dqβ

dba

]

τ=T
= −

∫ T

0

∂G

∂qβ

dqβ

dba
dτ

+
∫ T

0

λα

(
∂Qα

∂ba
− ∂Mαβ

∂ba
q̈β −

∂Dαβ

∂ba
q̇β −

∂Kαβ

∂ba
qβ

)

dτ (2.149)

Substituting Eq. (2.149) into Eq. (2.137) we receive the sensitivity gradient coefficients for the

general dynamic problem as

dφ

dba
= −G

θ̇

∂θ

∂ba

∣
∣
∣
∣
τ=T
−
∫

T(ba)

0

∂G

∂qβ

dqβ

dba
dτ +

∫
T(ba)

0

(
∂G

∂ba
+ ∂G

∂qβ

dqβ

dba

)

dτ

+
∫

T(ba)

0

λα

(
∂Qα

∂ba
− ∂Mαβ

∂ba
q̈β −

∂Dαβ

∂ba
q̇β −

∂Kαβ

∂ba
qβ

)

dτ (2.150)

Converting the above formula we obtain

dφ

dba
= −G

θ̇

∂θ

∂ba

∣
∣
∣
∣
τ=T

+
∫

T(ba)

0

∂G

∂ba
dτ

+
∫

T(ba)

0

λα

(
∂Qα

∂ba
− ∂Mαβ

∂ba
q̈β −

∂Dαβ

∂ba
q̇β −

∂Kαβ

∂ba
qβ

)

dτ (2.151)

2.5.6 Time Instant Sensitivity

In case of the time instant sensitivity, the sensitivity gradient is computed for a specific time

within the time interval [ 0, T ]. In other word the sensitivity of an instantaneous value of
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function G is searched. For simplification the terminal time condition θ is implied as an explicit

function with respect to the terminal time T , according to that Eq.(2.88) is prescribed to

θ [q(ba); q̇(ba); T ; ba] = 0 (2.152)

At this point we can use the signal theory presented in the previous section. The functional of

the structural response is considered as a series of successive impulses in infinitely small time.

Treating t as the running terminal time and δ(t− τ) as the Dirac-delta measure, we describe the

structural response functional in the form [26]

φ =
∫ t

0

G[qβ(ba, τ ); ba]δ(t − τ)dτ, (2.153)

where t ǫ [ 0, T ]; β = 1, 2, ..., N ; a = 1, 2, ..., A. The function G[ qβ(ba, τ ); ba ] is sup-
posed to be continuous in the whole time interval τ ǫ [ 0, T ].

Differentiating Eq. (2.153) with respect to design variables ba , at a fixed τ = t , gives

dφ

dba
= ∂G

∂ba
+

∫ t

0

∂G

∂qβ

dqβ

dba
δ(t − τ)dτ (2.154)

Using Eq. (2.107)1 we have

∂G(τ )

∂qβ

δ(t − τ) = ∂G(t)

∂qβ

δ(t − τ) (2.155)

Following the same lines as in Section 2.5.5. Eq. (2.145) is now rewritten for the new time

condition τ ǫ [ 0, t ] and t ǫ [ 0, T ], in the form

− (Mαβ λ̇α − Dαβλα)
dqβ

dba

∣
∣
∣
∣
τ=t
+

∫ t

0

(Mαβ λ̈α − Dαβ λ̇α + Kαβλα)
dqβ

dba
dτ

+ Mαβλα

dq̇β

dba

∣
∣
∣
∣
τ=t

=
∫ t

0

λα

(
∂Qα

∂ba
− ∂Mαβ

∂ba
q̈β −

∂Dαβ

∂ba
q̇β −

∂Kαβ

∂ba
qβ

)

dτ (2.156)

Improving the terminal time conditions

λα(t) = 0 and λ̇α(t) = 0 (2.157)

and comparing the terms involving dqα/dba at τ ∈ [0, t] under integration from Eqs. (2.154)

and (2.156), we get the adjoint equations of motion

Mαβ(ba)λ̈α(τ )− Dαβ(ba)λ̇α(τ )+ Kαβλα(τ ) = ∂G

∂qβ

δ(t − τ) (2.158)

Substituting Eq. (2.158) into Eq. (2.156) and taking the terminal conditions (2.157) into account

we get

∫ t

0

∂G

∂qβ

δ(t − τ)
dqβ

dba
dτ =

∫ t

0

λα

(
∂Qα

∂ba
− ∂Mαβ

∂ba
q̈β −

∂Dαβ

∂ba
q̇β −

∂Kαβ

∂ba
qβ

)

dτ (2.159)

that, substituted into Eq. (2.154), leads to the sensitivity gradient for the time instant sensitivity

of the form

dφ

dba
= ∂G

∂ba
+

∫ t

0

λα(τ )

[
∂Qα(τ )

∂ba
− ∂Mαβ

∂ba
q̈β(τ )− ∂Dαβ

∂ba
q̇β(τ )− ∂Kαβ

∂ba
qβ(τ )

]

dτ (2.160)

for any fixed time t ǫ [ 0, T ].
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2.6 A Model Numerical Examples

2.6.1 Three-Bar Truss System

Let us consider a three-bar truss structure presented in details in Fig. 2.14, that was described

in [12]. The goal of this section is to obtain the values of nodal displacements and static design

sensitivity for this system by POLSAP, and comparing them with the results given in [12].

60°

15°

75
°

0.5

1
.3

6
6

0.366

0
.8

6
6

F1
F2

30°

Figure 2.14 Three-bar truss structure dimensions

To simplify the process of entering the data into the program, three-bar truss from [12] is ro-

tated, as it is shown in Fig. 2.14. Adopted FEM setting and global coordinate system is pre-

sented in Fig. 2.15. If we consider F1 = F2 = 1, the nodal forces are equal Fx = 0.366

and Fy = 1.366. To the numerical computations the following values are assumed, the cross-

sectional areas of specific elements A1 = A2 = A3 = 1, the Young modulus E = 1 and mass

density ̺ = 1. To compare the results received from POLSAP with those given in [12], the

latter must be multiplied by appropriate trigonometric functions of α = 30◦. Displacements

obtained by POLSAP and from [12], are summarized in Table 2.1 for the coordinate system

from Fig. 2.15.

Table 2.1 Nodal static displacements for three-bar truss system

node coordinate [12] POSAP

1 x 1.4641 1.4639

y 0.0000 0.0000

2 x 0.0000 0.0000

y 0.0000 0.0000

3 x −1.6822 −1.6821
y 2.9136 2.9134
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Figure 2.15 FEM setting and nodal forces

Table 2.2 includes the values of the static sensitivity of node displacements with cross-sectional

areas of particular elements considered as design variables. During the numerical computation

we received very similar results as in [12]. That proves the effectiveness of the presented anal-

ysis.

Table 2.2 Design sensitivity of node displacements with respect to cross-sectional area of specific elements

node displacement design sensitivity results

direction [12] POSAP

cross− sectional area of el.no. 1 as design variable

1 x 0.000 0.000

3 x 0.000 0.000

3 y 0.000 0.000

cross− sectional area of el.no. 2 as design variable

1 x −1.4641 −1.4639
3 x −0.2679 −0.2679
3 y −0.4641 −0.4640

cross− sectional area of el.no. 3 as design variable

1 x 0.000 0.000

3 x −1.4142 −1.4142
3 y −2.4495 −2.4494

Now, we are going to present the design sensitivity of the eigenvalue problem for this model.

For this type of analysis according to [12], we adopted E = 1, ̺ = 1, A1 = A2 = 1 and

A3 = 2
√
2. The first eigenvalues obtained by POLSAP including above characteristics is equal

ξ = 0.08036 which is very similar to the result given by [12] ξ[12] = 0.08038.
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Table 2.3 presents the eigenvalue design sensitivity with respect to cross-sectional areas of spe-

cific elements, received by POLSAP. It should be noticed, that all results in this section are

given for the global coordinate system presented in Fig. 2.15.

Table 2.3 Eigenvalue design sensitivity with respect to element cross-sectional areas

Design POSAP

variable

A1 -0.0106

A2 0.0294

A3 -0.0785

2.6.2 Cantilever Beam - Eigenvalue Sensitivity

We present the numerical computations obtained for the cantilever beam shown in Fig. 2.16,

the analytical results of this type of structure can be found in [12,23]. The following values are

assumed during data processing: Youngh’s modulus E = 2.0E + 5, Poisson’s ration ν = 0.3,

mass density ̺ = 7.87E − 4, length of the beam L = 1.0, axial area A = 0.005, the moments

of inertia Jy = Jz = 4.17E − 5 and the torsion moment Jx = 8.35E − 5.

L=1

x

y

Figure 2.16 Cantilever Beam

The FEM model consisting of 100 beam elements is adopted during the numerical computa-

tions. The aim of the analysis is to find design sensitivity of eigenvalue with respect to the

cross-sectional area of specific elements. Obtained results are shown in Fig. 2.17.
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Figure 2.17 Design sensitivity of eigenvalue
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The values presented in Fig. 2.17, are received with taking into account one eigenvalue in the

numerical analysis. Maximum number of iterations required during data processing is 16, con-

vergence of tolerance 1.0E-5. Considering Fig. 2.17, we may draw a conclusion that the first

eigenvalue is more sensitive with respect to the change of cross-sectional areas of clamped end

than the free one, which seems to be natural from the point of view of this structure work.

2.7 An Example of Deterministic Analysis of Cable-Stayed

Bridges

2.7.1 Structure Description

Inspiration to creating the following model of cable-stayed bridge becomes the real structure

named Seri Wawasan Bridge, located in Putrajaya, Malaysia. It was designed by PJS Interna-

tional Sdn. Bhd. and built by Muhibbah Engineering (M) Bhd. It has been in use since 2003

[72]. This asymmetric bridge resembles a sail ship, Fig. 2.18.

 

Figure 2.18 Seri Wawasan Bridge [72]

Its total length is equal 240m. Main span with dimensions 168.5x37.2m is suspended on 62

symmetrical steel cables to the inverted-Y pylon with 85m height. Additionally, the pylon is

stabilized in its position by 58 steel ties with smaller cross-sectional areas, joined by hinges to

the steel arches.
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On the basis of gained information, the model with similar dimensions is created (cf. Fig. 2.19)

— pylon, the main span and bridge’s total length are equal 104m, 160m and 220m, respectively,

while deck’s total width is 40m. During static analysis all loads, characteristics of materials and

requirements are selected according to the polish rules of civil engineering, as if the object was

located in Poland.

 

Figure 2.19 Main dimensions inputting to the programm [63]

For simplification instead of inverted-Y shape we accepted a non-forked pylon with a box cross-

section. It is assumed to be fixed in the ground and supported by steel bars and arches, connected

by hinges. Steel arches are also rigidly fixed. The main span besides the suspension on cables

is supported in several points by pins.

Accepted static scheme is presented in Fig. 2.20

 

Figure 2.20 Accepted static scheme [63]
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Figure 2.21 Truss elements
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Figure 2.22 Beam elements
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Figure 2.23 Shell elements[63]
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2.7.2 Finite Element Mesh

The finite element setting is assumed on the basis of work manner of the main structural mem-

bers, support conditions and type of connections [7,39,44,45]. The model of suspended-bridge

is created by using three specific finite elements — truss, beam and shell.

Cables suspending the bridge and bars connecting the pylon with the arches are anchored by a

hinge. Because, there are only axial forces, these members are implemented to the numerical

programm as truss elements with total number 154. All details of their distribution are presented

in Fig.2.21.

Suspended span is adopted as a reinforced concrete plate with the thickness equal 30cm, strength-

ened by steel ribs. The plate is divided into 510 rectangular shell elements cf. Fig. 2.23.

For simplification the pylon, arches and steel ribs are split into smaller beam elements in the

number 675 (Fig. 2.22). According to the above mentioned assumptions, after complying

boundary conditions, a system with 3536 degrees of freedom is obtained.

2.7.3 Geometry and Material Properties of Structural Members

In this section a short descriptions of cross-sectional areas chosen for main elements of the

structures are presented. Additionally the geometrical and material characteristics for particular

members of the object [7,10,19,21,41,47] that are put to the program at the stage of creating

the model. All details of the equation that were used by determining the obtained values can be

found in [63].

2.7.3.1 Pylon

Seri Wawasan Bridge becomes an inspiration of making this examples, however in the process

of creating the model, the concept of the pylon with the shape of an inverted-Y, is rejected. For

simplification of the scheme the caisson cross-section, that is presented n Fig.2.24, is assumed.

z

y

Figure 2.24 Adopted caisson cross-section of the pylon [m]

For the proper giving the characteristics of the adopted cross-section, that are input data to the

numerical programm, the local axis ordination of the element needs to be defined. Therefore

they can be found in Fig. 2.25.
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O

x

z

y

Figure 2.25 Pylon’s local coordinate system

Moments of inertia with respect to local axis [52], presented in Fig. 2.25, read

Jpy = Jpz =
5× 53

12
− 3× 33

12
= 45, 33(3)m4

Jpx = 45, 33+ 45, 33 = 90, 66m4

The cross-section area of the considered element is expressed by the equation

Ap = 5× 5− 3× 3 = 16m2

Assuming that γpm = 25 kN/m3 is the self weight of reinforced concrete, and γ f is the safety

coefficient, the characteristic Gpk and computational Gpd values of pylon’s dead load are equal

respectively

Gpk = Apγpm = 16× 25 = 400 kN/m

Gpd = Apγpmγ f = 16× 25× 1, 2 = 480 kN/m

2.7.3.2 Arches

It is possible to model lengthwise variable cross-section of the arches by using shell elements,

but this approach will make the computation much more complicated. Therefore, the constant

values of the arches’ cross-section area are adopted to the input data — see Fig. 2.26.

y

z

y

z

Figure 2.26 Accepted pipe cross-section of the arches [m]
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The characteristics for the described beam element are obtained on the basis of following local

coordinate system — Fig. 2.27.

x

O z

y

Figure 2.27 Local axis ordination in the arches’ beam elements

Moments of inertia received for local axes from Fig. 2.27 are equal

Jay2 = Jz2 =
π

4
(1, 754 − 1, 724) = 0, 4922684758m4

Jax2 = 0, 4922684758+ 0, 4922684758 = 0, 9845369516m4

The cross-section area of the single arch is given by the below formula

Aa = π(1, 752 − 1, 722) = 0, 32704m2

It should be noticed that the most suitable material for the structure with this kind of shape is

steel. Therefore for gaining the characteristic and computational values of arch’s dead load —

Gak and Gad , the unit-volume weight γam = 78, 5 kN/m3 is assumed

Gak = Aaγam = 0, 32704× 78, 5 = 25, 67 kN/m

Gad = Aaγamγ f = 0, 32704× 78, 5× 1, 2 = 30, 81 kN/m

2.7.3.3 Span

In the created model of suspended bridge, the following dimensions of main span are adopted:

width — 40 m, total length — 220 m. At first, it was designed as a reinforced concrete plate

with the thickness equal 30 cm. Due to the large values of obtained vertical displacements from

the static loads, the plate is strengthened with longitudinal and crosswise steel ribs. When enter-

ing the model to the program some simplifications are applied. We assumed that the thickness

center of the plate coincide with the middle points of the ribs’ hight — mentioned problem is

illustrated in Fig. 2.28. Accurate reflection of the span’s work and connection between the ele-

ments may encounter many problems and makes the computations much more time-consuming.

The necessary input data for the plate are the components of constitutive matrix (see section

2.1), that can be expressed by the equation





σxx

σyy

σxs



 =





Cxx Cxy Cxs

Cyy Cys

sym. Gxy









ǫxx
ǫyy
γxs




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During following data processing, the maximum vertical displacement of the plate turns out

to be to large. Therefore by the council from the experts, we took characteristics of special

composite material:E =10000 kN
cm2 and ν = 0, 25 for research. Using this values the particular

terms of constitutive matrix are obtained

Cxx = Cyy =
E

1− ν2
= 10666, 67

kN

cm2

Cxy =
Eν

1− ν2
= 2666, 67

kN

cm2

Cxs = Cys = 0

Gxy =
E

2(1+ ν)
= 4000

kN

cm2

Assuming γplm = 25 kN/m3 , and plate’s thickness d = 30cm, we obtain the characteristic and

computational values of plate’s dead load

Gplk = dγplm = 0, 30× 25 = 7, 5 kN/m2

Gpld = dγplmγ f = 0, 30× 25× 1, 2 = 9, 00 kN/m2

 

Figure 2.28 Simplified view of plate model design for the experiment

2.7.3.4 Ribs

The plate is strengthened by steel instead of reinforced concrete ribs, according to Fig. 2.29.
 

Figure 2.29 Dimensions of rib’s cross-sections [cm]
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Geometry properties are adopted on the basis of [8]. Moments of inertia are equal respectively

Jr y = 3395400 cm4 (2.161)

Jr z = 54210 cm4

Jr x = Jr y + Jr z = 3449610 cm4

Cross-section area for element from Fig. 2.23 is

Ar = 532 cm2

Values of rib’s dead load are given in the form

Grk = = 4, 256 kN/m

Grd = Grkγ f = 4, 256× 25× 1, 2 = 5, 1072 kN/m

2.7.3.5 Cables

In data processing the ropes in the form of seven galvanized wires φ5mm in the HDPE coat,

are adopted — see Fig. 2.30. This type of cables are the most widespread. The main material

characteristics are assumed on the basis of [7,38]: yield stress — σc = 1670MPa, breaking

strength — Rpk = 1870MPa, and elasticity modulus — Ec = 200GPa.

Appointing the necessary values of cross-section areas the main cables is a quite complex issue

and for this example it is shown in details in [63]. This values for particular cables are between

25, 57cm2 and 38, 29cm2. For simplification, the constant values of cross-section areas of these

suspension structures are adopted. In receiving the necessary areas of cables, the load of the

reinforced ribs is not included, the larger cross-section is accepted in the computations Ac =
63, 02 cm2.

 

5 mmGalwanized wires

Covering pipe from HDPE

Figure 2.30 Exemplary cable’s cross-section

The second ties’ group that connect the pylon and arches is less strenuous than the main cables,

therefore the solid bar with 36mm diameter is adopted to the computation , Ac2 = 10, 18 cm2.

According to [7], the Young’h modulus E = 210GPa for these elements is implied.
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2.7.4 Loading Combinations

In order to perform the static analysis for the previously described bridge, the following loads

need to be taken into account: constant load from the weight of bridges’ elements, surface load

from systems of roadway and pavement’s layers, but also moving, crowd and wind load.

2.7.4.1 Constant surface load

Figs. 2.31 present the system of roadway and pavement’s layers with the values of thickness.

On this basis and using simultaneously the provisions contained in the polish rules of civil en-

gineering [69,70], the characteristic and computational values of particular loads are received.

They are summarized in tables 2.4 and 2.5.

a)

30 cm
5 cm
1 cm
4 cm

plate
levelling concrete
insulation - 2x glued building paper
concrete - protective layer

4 cm cast asphalt - binding layer
3 cm top asphalt - abrasive layer

4
7

b)

6
2

1
5

4
7

cobblestones8 cm
sand layer14 cm
concrete - protective layer
insulation - 2x glued building paper
levelling concrete

4 cm
1 cm
5 cm

30 cm reinfoced concrete plate

Figure 2.31 The system of a) roadway’s layers; b) pavement’s layers
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Table 2.4 Loads from the roadway layers

Characteristic Computational

Layer Thickness γm load γ f load

[m] [kN/m3] [kN/m2] [kN/m2]

1. Plate 0.30 25 7.50 1.2 9.000

2. Leveling concrete 0.05 24 1.20 1.5 1.800

3. Insulation 0.01 14 0.14 1.50 0.210

4. Concrete 0.04 24 0.96 1.50 1.440

5. Cast asphalt 0.04 23 0.92 1.5 1.380

6. Top asphalt 0.03 23 0.69 1.5 1.035
∑

g1k = 11.41
∑

g1d = 14.865

The above computation are subsequently repeated to obtain the loads from pavement’s system.

Table 2.5 Pavement layers’ design data

Characteristic Computational

Layer Thickness γm load γ f load

[m] [kN/m3] [kN/m2] [kN/m2]

1. Reinforced concrete plate 0.30 25 7.50 1.2 9.00

2. Leveling concrete 0.05 24 1.20 1.5 1.80

3. Insulation 0.01 14 0.14 1.5 0.21

4. Concrete 0.04 24 0.96 1.5 1.44

5. Sand layer 0.14 17 2.38 1.5 3.57

6. Cobblestones 0.08 27 2.16 1.5 3.24
∑

g2k = 14.34
∑

g2d = 19.26

2.7.4.2 Constant Linear Load

When the surface loads are obtained it is necessary to add the linear load from a kerbstone and

a cornice. Received values are summarized in Table 2.6.

Table 2.6 Constant linear load

Size of Characteristic Computational

Element cross-section γm load γ f load

[mxm] [kN/m3] [kN/m] [kN/m]

Kerbstone 0.1x0.22 27 0.594 1.5 0.891

Cornice 0.15x0.77 25 2.88 1.5 4.331
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2.7.4.3 Moving Load of Road Bridge Objects and Crowd Load

Due to the fact that the considered object is a road bridge, the crowd and moving load need to

be taken into account [7,69]. The specific moving load is presented in simple form in Fig. 2.32.

P P P P

K

q

1,21,21,2

2
,7

q
2
,0

Figure 2.32 Moving load on the fragment of the span

For this structure A class of object is adopted. Therefore the following values of constant loads

are applied [69]:

— q = 4, 0kN/m2 - for main elements

— K = 800kN - car’s train

— P = 200kN - pressure on axle

All details for the above calculations can be found in [63]. Assuming dynamic coefficient

ϕ = 1.0 [69], and safety factor γ f = 1, 5 the computational values of the obtained loads are

equal

qd = 6 kN/m2

Pobl = 200× 1.5× 1.0 = 300 kN

The crowd pressure on the pavement is included as a constant surface load. Using safety factor

γ f = 1.3 and [69] we receive

qtk = 2, 5
kN

m2

qtd = 3, 25
kN

m2

2.7.4.4 Static Wind Load

Because of scientific research character of this paper, the static wind effect is adopted including

some simplifications [7]. Examples of loads acting on different parts of the bridge are illustrated

in Fig. 2.33.
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k1w

k2w

w1

w2

Figure 2.33 Cases of wind load

To obtain the above presented values of wind, the location of the object is necessary to be cho-

sen. During data processing, we decided that this suspended bridge will be designed for the

Szczecin conditions. The safety factor for the wind influence is equal 1.3. Characteristic and

computational values of particular wind loads on the plate are:w1k = 0, 5kPa, w1d = 0, 65kPa,

w2k = 1, 25kPa, w2d = 1, 625kPa. The static values of the wind load on the pylon are accepted

according to Fig. 2.34.

5
0

4
0

1
0

w
k1

= 0,55 kPa

= 1,10 kPa
k2

w

w
k3
= 1,84 kPa

Figure 2.34 Static wind load on the pylon

During data processing, this pressure is reduced to the concentrated forces put in the nodal

points.

2.7.5 Static analysis

Because of the theoretical character of this dissertation, the static analysis is made with some

simplification. Displacements and internal forces are obtained for the maximum combination
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of the previously described loads: dead weight of the main parts of the system, moving loads

of road bridge object, crowd and static wind pressures. In the case of real structure designing

it would be necessary to include additionally: weight of the equipment elements, thermal im-

pacts, installation load at different stages of construction, internal forces created as a result of

changing the static scheme caused by damage of the cable, difference in supports subsidence,

dynamic wind and rain influences (specific loads for the suspended bridge).

It should be noticed, that various combinations of the above cases need to be considered in real

designing of this type of bridge. However the goal of this example is to show in details the dy-

namic and sensitivity results for suspended bridge. Therefore, the statics is used to confirm the

validity of the adopted scheme and cross-section areas of main elements. Because of symmetry

of the bridge with respect to x axis, the results of displacements and internal forces obtained for

the corresponding nodes should be equal.

Statics is the analysis which encounter many model problems associated with too large values

of received displacements in the span. Using in the bridge only reinforced concrete plate sus-

pended on the cables, makes the maximum vertical movement reach about 9 meters. To stiffen

the main span, seven longitudinal rows of steel ribs were designed and spacing of transverse

ribs ranges from 4 to 5 meters. Unfortunately, the treatment improved the situation but did not

give fully expected results. By the council of experts instead of the reinforced concrete for the

plate the modern composite material is used, with the properties assumed as follows: Young

modulus — E = 100GPa, Poisson’s ratio — ν = 0, 25. The composite is generally the specific

material strengthened by glass, graphite or carbon fibers. It is relatively expensive and therefore

rarely used in civil engineering, but has much better mechanical and strength features and at

the same time has a low specific gravity. However, in spite of the structural material change,

deflection of the span was still to large.

Only assistance from the members of the Building Mechanic Unit in Szczecin West Pomeranian

University of Technology allowed to find a solution of this issue. The large dimensions of the

bridge cause the length of main cables reach even up to 150m. It turns out that the cables do not

fulfill their function and work like springs. It proved necessary to apply initial tension of those

structures to minimize the span’s displacements. To accomplish this, vertical forces imitating

the initial tension were placed at the pylon and plate, by using the experimental method. Some

methods about the modeling of bridges initial tension can be found in [46]. This treatment

not only reduced the deflection of suspended part of the span, but also resulted in getting the

greater part of the load by a plate’s fragment rested on supports. The summation of the final

displacements in selected nodes obtained after assuming the composite plate strengthened by

longitudinal and transverse ribs, is presented in table 2.7. The results include the implied initial

tension to the suspended part of the bridge.

If we look at many model problems that were encountered in static analysis, we come to the

conclusion that the initial up-deflection of the span, should be considered in this type of struc-

ture. Properly matched bent arrow may reduce the values of vertical displacements. The results

received for the nodes from plate that are given in table 2.7, confirm correctness of the adopted

system — symmetrical points have the same values of movements. It can be also noticed that

the closer to the fixed end of the pylon and the arches the lover values of x- and z-displacements

are. On this basis we may conclude that the accepted model works properly. In tables 2.8 and

2.9 the internal forces obtained for the selected points in beam and plate elements are presented.
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Table 2.7 Displacements of the representative nodal points in different part of the structure

Nodal X Y Z XX YY ZZ

point Translation Translation Translation Rotation Rotation Rotation

[cm] [cm] [cm] [rad] [rad] [rad]

a) pylon

635 9.411E-01 -9.150E-13 -4.451E-01 1.846E-16 3.228E-05 4.780E-16

610 7.061E-01 -4.390E-13 -3.888E-01 1.555E-16 1.005E-04 3.292E-16

580 2.969E-01 -9.370E-14 -2.321E-01 7.470E-17 1.229E-04 1.504E-16

b) plate— max. static displacements

309 1.745E-02 4.472E-04 -8.985E-01 -3.453E-02 -8.047E-04 0.0

310 1.744E-02 3.585E-04 -9.561E+00 -3.407E-02 -8.493E-04 0.0

311 1.733E-02 2.388E-04 -2.503E+01 -2.776E-02 -6.448E-04 0.0

312 1.722E-02 1.419E-04 -3.693E+01 -1.871E-02 -3.805E-04 0.0

313 1.716E-02 4.747E-05 -4.289E+01 -5.256E-03 -3.120E-04 0.0

314 1.715E-02 -1.188E-15 -4.350E+01 -1.090E-16 -3.207E-04 0.0

315 1.716E-02 -4.747E-05 -4.289E+01 5.256E-03 -3.120E-04 0.0

316 1.722E-02 -1.419E-04 -3.693E+01 1.871E-02 -3.805E-04 0.0

317 1.733E-02 -2.388E-04 -2.503E+01 2.776E-02 -6.448E-04 0.0

318 1.744E-02 -3.585E-04 -9.561E+00 3.407E-02 -8.493E-04 0.0

319 1.745E-02 -4.472E-04 -8.985E-01 3.453E-02 -8.047E-04 0.0

c) arches

682 -2.376E-01 -2.573E-01 -6.056E-02 2.221E-04 3.834E-05 6.001E-05

683 -2.376E-01 2.573E-01 -6.056E-02 -2.221E-04 3.834E-05 -6.001E-05

702 1.726E+00 -1.200E+00 -9.793E-01 2.551E-04 4.810E-04 3.456E-04

703 1.726E+00 1.200E+00 -9.793E-01 -2.551E-04 4.810E-04 -3.456E-04

724 1.582E+00 -4.747E-01 -1.064E+00 2.106E-04 -2.043E-04 5.677E-04

725 1.582E+00 4.747E-01 -1.064E+00 -2.106E-04 -2.043E-04 -5.677E-04

Summing up this part of computations, despite many problems that were encountered in creat-

ing the model, the issue of inputting the initial tension of the cables in suspended bridges and

increasing stiffness of the plate, is very interesting and gives many prospects in future works. It

is undoubtedly worth to be developed in further research.

Table 2.8 Internal forces in the representative beam elements

XX YY YY XX YY XY

Element Axial Shear Shear Bending Bending Torsion

number Force Force Force Moment Moment Moment

[kN] [kN] [kN] [kNcm] [kNcm] [kNcm]

10 2.677E+04 8.474E+01 1.446E-12 -7.966E-07 -3.648E-07 2.299E+05

-2.677E+04 -8.474E+01 -1.446E-12 7.966E-07 3.648E-07 -2.095E+05

64 0.000E+00 -1.310E-10 7.782E-12 -3.078E-10 -2.134E-09 8.475E-08

0.000E+00 1.310E-10 -7.782E-12 3.078E-10 -1.223E-09 1.546E-07

121 6.956E+01 5.870E+02 3.146E+01 5.285E+04 -2.266E+05 -2.544E+05

-6.956E+01 -5.870E+02 -3.146E+01 -5.285E+04 2.002E+05 7.473E+05
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Table 2.9 Internal forces in the representative plate elements

XX YY YY XX YY XY

Element Membrane Membrane Membrane Bending Bending Torsion

number Stress Stress Stress Moment Moment Moment

[kN/cm2] [kN/cm2] [kN/cm2] [kNcm] [kNcm] [kNcm]

85 1.784E-03 5.365E-03 -1.845E-03 -1.548E+02 4.970E+01 -2.259E+01

195 1.890E-02 1.989E-03 -2.307E-04 -1.926E+02 -3.908E+02 1.713E+01

315 1.214E-02 1.307E-03 -1.187E-04 -1.500E+02 -4.923E+02 -5.341E+00

475 7.661E-04 -7.193E-04 -1.208E-04 -3.522E+02 -9.312E+01 5.104E+00

2.7.6 Dynamic Analysis

The road suspended bridge is a special example of structure, therefore in practice it may be

exposed to various dynamic loads, for example:

— influence of wind and rain,

— forces from a sudden movement of vehicle,

— vehicles colliding into bridge’s structure,

— vibrations induced by a crowd of pedestrians,

— earthquakes, etc.

These problems are very complex and their analysis requires comprehensive knowledge, expe-

riences and especially an engineering instinct. However not only the above-mentioned types of

loads should be included. In the age of uncertain times, terroristic threat is equally likely as the

earthquake, therefore dynamic analysis in this kind of objects seems to be necessary. In research

we decided to consider a case of a sudden hit of a constant force during 40seconds. The impulse

with the value of 10000kN is applied at the top of the pylon, parallel to the longitudinal axis of

the bridge (cf. Fig. 2.35). We justify this choice by the fact, that the loads given this way may

cause the largest damage of the structure, in our opinion.

t [s]
0 10 20 30 40

f(t) [kN ]

10
4

Figure 2.35 Dynamic force

The eigenproblem is solved for the first 12 eigenpairs and convergence is reached at the iteration

step no. 11. The number of most dominated eigenvalues is 12. Maximum number of iteration

required during the data processing is adopted as 20. The tolerance convergence is equal 1e-05.

The results of the first seven circular frequencies and their corresponding periods are presented

in Table 2.10, compare [64].
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Dynamic analysis is made by the mode superposition method with 10000 time steps 1t with

0, 004s, each. The obtained results are presented for two approaches, with and without in-

cluding the modal damping coefficient λ = 0.01. Dynamic longitudinal displacements are the

largest for the top of the pylon (node 635), where the impulse of excitation is put. This seems

to be natural for two reasons, the time-dependent force acts on this node and it is the highest

point in the pylon, that is fixed in the ground. What was predictable, under the dynamic force

the most significant vertical vibrations occur in the middle of the suspended part of the plate,

while in other points are slight. The static analysis shows that the largest z-axis displacement

takes place in the middle point of the plate — node 315, however the most significant dynamic

movement turns out to be in node 358, therefore this point is chosen to present further compu-

tation results.

Table 2.10 Circular frequencies and periods of the undamped system

Mode Circular frequency Period

number [rad/s] [s]
1 4.68 1.34

2 4.97 1.26

3 7.14 0.88

4 7.77 0.81

5 8.06 0.78

6 10.60 0.59

7 11.52 0.55

Fig. 2.35 shows the time-dependent vertical displacement for the chosen node of the plate and

longitudinal displacement for the selected point of the pylon. Looking at these graphs, the spe-

cific course of vibrations can be noticed. Namely, the amplitude is changing periodically in

time. This may indicate the presence of the beat effect in our model. This phenomenon is often

observed in structures with regular, repetitive segments of geometry and for this type of objects

it is a consequence of overlapping vibrations with almost equal frequencies. Considering the

results from Table 2.10, it can be seen that the two adjacent frequencies have very similar values.

From the point of view of the material fatigue the beat phenomenon may be treated as an un-

desirable effect, and therefore in some cases it must be eliminated. It is commonly known,

that if we consider the work of a real structure it is impossible to observe the time-dependent

displacements without damping influence, because of many factors that are involved in. During

the numerical computations, the elements that inhibit the vibrations are taken into account by

the modal damping coefficient λ = 0.01.

Looking at the Fig. 2.35, one can mistakenly draw a conclusion about damping being sufficient

to eliminate the beat effect. However if we see at the graphs that present time-dependent in-

ternal forces (compare figs. 2.31-2.32), it is noticeable that the use of coefficient λ results in

gradual decay of vibration but the periodical changes of the amplitude are still present. Further

attempts to avoid the beat phenomenon are taken by analysis of the symmetrical bar dome and

are described in details in section 3.6.

Fig. 2.37 shows the internal forces for the selected beam elements in the pylon. The component

no. 10 is in one third of the height measured from the fixed end in the ground, while the 64’th

is on the top.



An Example of Deterministic Analysis of Cable-Stayed Bridges • 59

a)

� �� �� �� ��

���	 
��


��


�

�

�

��

��

�
	�
��
��
�
�
��
�
��
�	
�
	�
�
��
��
	
�
�
�
	
�
�
�
�
	�
�
�
�

�
�
�

������	� ����	�

������

b)

� �� �� �� ��

���	 
��


��


��


�


�

�

�
�
�
�
��
�
�
��
��
�
��
�
��
�	
�
	�
�
��
��
	
�
�
�
	
�
�
�
�
	�
�
�
�

�
�
�

������	� ����	�

� �!��

Figure 2.36 a) Vertical displacements at the mid point of the plate; b) Longitudinal displacements at the top of

the pylon
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Figure 2.37 Dynamic internal forces in selected pylon’s beam elements a) shear forces; b) YY-bending moments
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Figure 2.38 Dynamic bending moments in selected plate’s elements a) XX; b) YY
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Figure 2.39 XY-torsion moments in selected plate’s elements

As it is seen in the graph, the shear forces are larger for the members which are located near the

basis, however the difference between the values is not so significant. The same regularity can

be observed in the case of the second type of internal forces, except that the bending moment

for the beam component lying at a lower height is several times greater than at the top. Obtained

result seems to be obvious due to higher distance between the 10’th element and the point of

application of the dynamic load.

In Figs. 2.38 and 2.39 are presented the comparisons of the internal moments received for two

plate member, from the middle of the suspended part of the span. 315’th element is adjacent

to the longitudinal axis of the bridge while the 311’th is on the edge of the plate. Looking at

fig. 2.38 we can conclude that the XX- and YY-bending moments in cross-section of the plate

are larger for the components that are lying closer to the center of the span. In contrast to the

previously described internal forces, XY-torsional moment, exposed in fig. 2.39, achieves the

maximum values for elements placed on the edge of the plate, while the minimum for the mid-

dle part of the span.

As it is shown in the mentioned graphs, the XY-torsional moment’s values are twice smaller

than bending one’s. The described internal forces for the span behave the same as for normal

plate in a complex stress state, namely, the larger displacements in nodes the higher values of

bending moments, the smaller distance of the considered element from the symmetry axis of

the span the lower torsional moments.
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2.7.7 Eigenvalue sensitivity

In this section we consider the sensitivity of eigenvalues with respect to the cross-sectional areas

of specific truss and beam elements and with respect to the thickness of the plate components.

Table 2.11 presents selected results obtained for first three eigenvalues. It can be noticed that

the eigenvalues are the most sensitive with respect to the change of the cross-sectional areas of

back cables, that connected the pylon with the arches, and that stabilizing the pylon.

During the statics and dynamics this cables was treated as secondary truss elements, only sen-

sitivity analysis change the view on theirs meaning in the whole structure’s work. According to

that, we may presume that those components are highly probable to become crucial members

at this structure.

Table 2.11 Eigenvalues design sensitivity

Element design sensitivity of the eigenvalue

number first second third

a) with respect to the cross-sectional area of the truss element

102 0.00761 0.00257 0.00143

127 0.01005 0.00274 0.00537

b) with respect to the cross-sectional area of the beam element

65 0.00040 0.00012 0.00347

121 0.00017 0.00000 0.00132

c) with respect to the thickness of the plate element

132 0.00020 0.00010 0.00009

439 0.00010 0.00046 0.00003

2.7.8 Dynamic Sensitivity

Dynamic sensitivity analysis is focused on checking how a change of cross-section area of par-

ticular elements influences displacements in selected nodes. First of all we consider dynamic

sensitivity of the deflection of the span’s middle point with respect to the cross-sectional areas

of chosen plates’, beams’, and trusses’ elements. The functional of structural response in nu-

merical computations is assumed in the form

φ = |qα|
qall

− 1 < 0 (2.162)

where qα, qall mean displacement of selected node and allowable displacement at this point,

respectively. According to that, the limit value of vertical movement in 358’th plate’s node is

determined to 15cm. The most significant results of structural response received for this point

are presented in fig. 2.40 for two cases — with and without damping. If we look at the course

of the mentioned graph, the periodical changes of the amplitude are noticed, which confirms

the presence of beat phenomenon.
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Figure 2.40 Dynamic sensitivity of the mid point in the plate by the change the cross-section area of a) truss

element no. 37; b) plate element no. 324
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Figure 2.41 Dynamic sensitivity at the top point of the pylon by the change the cross-section area of the truss

element no. 60

Generally, the displacement sensitivity of selected node gains the largest values with respect

to the change of geometric or material characteristics of the elements in its domain compare

[66]. However this stage of the analysis gives surprising conclusions. During the numerical

computations, it turns out that the z-direction displacement of node 358 is the most sensitive to

the change of the cross-sectional area one from main cable’s — truss el. no. 37, suspended the

span to the pylon in point with the same x-coordinate as examined node.

That give us a different view on the importance of the main elements in considered bridge. Pre-

vious static and dynamic studies didn’t show that the role of that cable is the most significant

for the deflection of the plate. Only sensitivity analysis reveals the validity of this component.

Second part of the computations applies to the longitudinal displacement of the top of the pylon.

The limit value of x-direction movement of 635’th node is determined to 10cm. Analogically as

in the case of the plate it turns out that this point is the most sensitive to change of main cable’s

cross-section area — truss element no. 60, that connects the top of the pylon and the span. The

mentioned results are presented in fig. 2.41.

On all the above graphs we can observe the increase of the dynamic sensitivity in time, addi-

tionally they show the presence of the beat phenomenon in this analysis as well. If we take

coefficient of modal damping into account, the amplitude of the response decreases but it still

changing periodical in time. In further research we try to eliminate the mentioned effect by us-

ing an added lumped mass in selected nodes. This method is described in details in the section

no. 3.6.
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In theoretical point of view it is possible to correct the beat phenomenon for such kind of

suspended bridge by adding lumped mass but taking into account the practical possibility this

type of treatment becomes impossible. Dynamic sensitivity analysis proves that for eliminating

this effect the material of lumped mass would have to has the large value of inertia, which

cannot be achieved in our reality.

2.8 Summarizing Remarks

Most of objects in the civil engineering are complex structural systems with MDOF, which

makes them impossible to be considered by analytical method. In computational examples we

prove that the numerical methods may be successfully used in designing process of this type

of schemes. After creating a model and inputting it into the program, we can obtain the results

comparable to the analytical ones.

Consideration of such kind of suspended bridge is a very complex issue. The problem is not

only the FEM setting but also proper selection of materials. The results presented in Section 2.7

show a great importance of dynamic and sensitivity analysis in structure designing nowadays.

These numerical computations provide new insight into structures work and show unnoticed so

far meaning of the individual elements.

The course of time-dependent displacements in selected nodes of the bridge discloses the pres-

ence of beat effect. This phenomenon is largely caused by the symmetry of the geometry. If

we are trying to design that kind of slender structure we should first analyze all possible loads

which our object can be exposed to. Dynamic and sensitivity analysis seem to be necessary if

we want to create a safe and stable bridge.



Chapter 3

Stochastic Dynamic Systems

3.1 Stochastic Version of Lagrange’s Equations

The previous chapter is about the deterministic systems where we have a defined value of the

function for every argument. In this analysis is obtained only one result of the variable, for

example force or displacement at a given point. However, for determining the error measure of

the received results, it is necessary to include the stochastic analysis which is related to the sys-

tems described by random variables xr (τ ). We cannot predict the value of the random variables

xr (τ ) for every τ , because it is not a known function of any argument. The history of xr (τ ) for

specific r is called a sample function. The random process contains the whole set of possible

histories, {xr (τ )}, r = 1, 2, ..., r̂ , in the object considered in this section [26,27,35].

3.1.1 Mean-Point Second Moment Perturbation Method

We define the vector of time-independent random variables in the form h = {hr }, r = 1, 2, ..., r̂ ,

given by their first two central moments—means h̄ = {h̄r } and cross-covariances [Cov(hr , hs)];
r, s = 1, 2, ..., r̂ , i.e.

[Cov(hr , hs)] =








Var(h1) Cov(h1, h2) . . . Cov(h1, hr̂ )

Var(h2) . . . Cov(h2, hr̂ )

sym
. . .

...

Var(hr̂ )








(3.1)

Let us consider the vector x = {xi (h)}, i = 1, 2, ..., î , which is a function of h. We tend

to obtain the equations for the first two probabilistic moments, E[xi ] and Cov[xi , x j ]; i, j =
1, 2, ..., î , by using the second moment perturbation method (SMPM) [26,35] . For the clarity

of presentation, the whole procedure will initially be shown with the first order precision, sub-

sequently the process will be repeated with the terms up to the second order.

Starting considerations, the random variables xi (h) are expanded in Taylor series up to first

order around the means h̄r as

xi (h) = xi (h̄)+ ∂xi

∂hr

∣
∣
∣
∣
h=h̄

(hr − h̄r ) (3.2)
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Aiming to receive the mean values of {x̄i (h)} using the linear transform [26], we get the mean

values of particular terms from Eq. (3.2). The derivatives ∂xi/∂hr at h = h̄ are constant,

therefore the mean values of the second terms of Eq. (3.2) concern in the brackets containing

the random variables hr and their means

x̄i (h) = E[xi ] = E[xi (h̄)] + ∂xi

∂hr

∣
∣
∣
∣
h=h̄

E[(hr − h̄r )]
︸ ︷︷ ︸

=0

= xi (h̄) (3.3)

The dispersions of the random variables {xi } about their means {x̄i } are given by

xi − x̄i = xi (h̄)+ ∂xi

∂hr

∣
∣
∣
∣
h=h̄

(hr − h̄r )− xi (h̄) = ∂xi

∂hr

∣
∣
∣
∣
h=h̄

(hr − h̄r ) (3.4)

Analogically, we have

x j − x̄ j =
∂x j

∂hs

∣
∣
∣
∣
h=h̄

(hs − h̄s) (3.5)

The cross-covariances Cov(xi , x j ) may be obtained by definition

Cov(xi , x j ) = E[(xi − x̄i )(x j − x̄ j )] (3.6)

Substituting Eq. (3.4) and (3.5) into (3.6), we receive

Cov(xi , x j ) = E

[
∂xi

∂hr

∂x j

∂hs

∣
∣
∣
∣
h=h̄

(hr − h̄r )(hs − h̄s)

]

(3.7)

= ∂xi

∂hr

∂x j

∂hs

∣
∣
∣
∣
h=h̄

E[(hr − h̄r )(hs − h̄s)] =
∂xi

∂hr

∂x j

∂hs

∣
∣
∣
∣
h=h̄

Cov(hr , hs)

Now the process of determining the first two probabilistic moments is rewritten with expanding

the random variables in power series up to second order around the means h̄r

xi (h) = xi (h̄)+ ∂xi

∂hr

∣
∣
∣
∣
h=h̄

(hr − h̄r )+
1

2

∂2xi

∂hr ∂hs

∣
∣
∣
∣
h=h̄

(hr − h̄r )(hs − h̄s) (3.8)

The values of xi (h̄) and derivatives ∂xi/∂hr and ∂2xi/∂hr ∂hs at h = h̄ are constant. Using Eq.

(3.3), the means of the random variables form Eq. (3.8) are presented by the formula

x̄i = xi (h̄)+ ∂xi

∂hr

∣
∣
∣
∣
h=h̄

E[(hr − h̄r )]
︸ ︷︷ ︸

=0

+1

2

∂2xi

∂hr ∂hs

∣
∣
∣
∣
h=h̄

E[(hr − h̄r )(hs − h̄s)]
︸ ︷︷ ︸

Cov(hr ,hs)

= xi (h̄)+ 1

2
x

(2)
i (3.9)

where

x
(2)
i = ∂2xi

∂hr ∂hs

∣
∣
∣
∣
h=h̄

Cov(hr , hs) (3.10)

and this symbol will be used from now on in the text, i.e.

(·)(2) = ∂2(·)
∂hr ∂hs

∣
∣
∣
∣
h=h̄

Cov(hr , hs) (3.11)
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The spreads of the variables xi around their means x̄i are

xi − x̄i = xi (h̄)+ ∂xi

∂hr

∣
∣
∣
∣
h=h̄

(hr − h̄r )+
1

2

∂2xi

∂hr ∂hs

∣
∣
∣
∣
h=h̄

(hr − h̄r )(hs − h̄s)

−xi (h̄)− 1

2
x

(2)
i

= ∂xi

∂hr

∣
∣
∣
∣
h=h̄

(hr − h̄r )+
1

2

∂2xi

∂hr ∂hs

∣
∣
∣
∣
h=h̄

(hr − h̄r )(hs − h̄s)−
1

2
x

(2)
i (3.12)

Analogically, the subtraction of the second variables x j and their means x̄ j is expressed as

x j − x̄ j = ∂x j

∂hs

∣
∣
∣
∣
h=h̄

(hs − h̄s)+
1

2

∂2x j

∂hr ∂hs

∣
∣
∣
∣
h=h̄

(hr − h̄r )(hs − h̄s)−
1

2
x

(2)
j (3.13)

The result of Eqs. (3.12) and (3.13) multiplication, excluding the terms higher than second

order is

(xi − x̄i )(x j − x̄ j ) = −1

2

∂xi

∂hr

∣
∣
∣
∣
h=h̄

(hr − h̄r )x
(2)
j − 1

2

∂x j

∂hs

∣
∣
∣
∣
h=h̄

(hs − h̄s)x
(2)
i

+ ∂xi

∂hr

∂x j

∂hs

∣
∣
∣
∣
h=h̄

(hr − h̄r )(hs − h̄s)+
1

4
x

(2)
i x

(2)
j

−1

4

∂2xi

∂hr ∂hs

∣
∣
∣
∣
h=h̄

(hr − h̄r )(hs − h̄s)x
(2)
j

−1

4

∂2x j

∂hr ∂hs

∣
∣
∣
∣
h=h̄

(hr − h̄r )(hs − h̄s)x
(2)
i (3.14)

Using Eq. (3.6), the mean values of Eq. (3.14) lead to the formula for the cross-covariances of

two random variables with the second order precision

E[(xi − x̄i )(x j − x̄ j )] =

= −1

2

∂xi

∂hr

∣
∣
∣
∣
h=h̄

E[(hr − h̄r )]
︸ ︷︷ ︸

0

x
(2)
j − 1

2

∂x j

∂hs

∣
∣
∣
∣
h=h̄

E[(hs − h̄s)]
︸ ︷︷ ︸

0

x
(2)
i

+
[

∂xi

∂hr

∂x j

∂hs
− 1

4

∂2xi

∂hr ∂hs
x

(2)
j − 1

4

∂2x j

∂hr ∂hs
x

(2)
i

]

h=h̄

E[(hr − h̄r )(hs − h̄s)]
︸ ︷︷ ︸

Cov(hr , hs)

+1

4
x

(2)
i x

(2)
j (3.15)

After reducing similar terms we have

Cov(xi , x j ) = ∂xi

∂hr

∂x j

∂hs

∣
∣
∣
∣
h=h̄

Cov(hr , hs)−
1

4
x

(2)
i x

(2)
j (3.16)

To sum up this section, there are some disadvantages of the SMPM in comparison to the Monte

Carlo simulation [26]. Namely, we obtain only the first two probabilistic moments and the ran-

dom variables xi are supposed to have the small fluctuation and be continuous at h̄r . However,

the SMPM has also the considerably positive sides. There are no requirements of defining the

normal distribution of {xi }. Only mean values and the cross-covariances of h are necessary to

be entered on input. To obtain the results with the same precision only r̂ order of equations

system is considered no r̂3, like in Monte Carlo simulation. The last advantage comes from re-

placing the r̂2 vectors ∂2xi/∂hr∂hs (r, s = 1, 2, ..., r̂ ) with single vector of the form {x (2)
i (h̄r )},

presented in Eq. (3.10).
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3.2 Solving Systems of Hierarchical Equations

The second moment perturbation method concerns solving the system of linear differential

equation with î degrees of freedom and receiving the unknown vector of output signals {xi }, i =
1, 2, ..., î . The input signal vector f = { fi (hr , τ )} is defined to be an explicit function with re-

spect to time and the previously presented random parameters vector h = hr , r = 1, 2, ..., r̂

that is specified by first two central moments h̄ = {h̄r } and [Cov(hr , hs)]. The components of

vector f are assumed to be twice differentiable with respect to h and τ .

The relationship between the vectors of input and output signals, can be presented by the system

of linear differential equation in the form [26]

Lx = f(h, τ ) (3.17)

where L is a differential operator whose matrices are explicit functions of h being supposed

to be twice differentiable with respect to h. Solving Eq. (3.17) to obtain the unknown vector,

shows that x = {xi (hr , τ )} is an implicit function of random parameters vector and time. In

accordance with the requirements of the task, the components of vector {xi } are also assumed

to be twice differentiable with respect to h and τ .

The goal of the considered perturbation method is to obtain first two probabilistic moments for

{xi }: the mean values vector {E[xi (τ = t)]} and the cross-covariances matrix [Cov(xi (τ =
t1); x j (τ = t2)], i = 1, 2, ..., î . For the sake of concise derivations, all terms of Eq. (3.17) are

moved to the right-hand side of the equation, and they are written in the residual form [26] as

R = f(h, τ )− Lx = 0 (3.18)

Next, all the functions of {hr } from Eq. (3.18) are expanded in Taylor series up to the second

order around the means h̄r , to the formula

R(h) = R(h̄)+ δR(h̄)+ 1

2
δ2R(h̄)

= R(h̄)+ dR

dhr

∣
∣
∣
∣
h=h̄

δhr +
1

2

d2R

dhrdhs

∣
∣
∣
∣
h=h̄

δhrδhs = 0 (3.19)

with δhr being the first variations hr about h̄r . For any small parameter ǫ, we have

δhr = ǫ (hr − h̄r ) (3.20)

Analogically, the second mixed variation of hr and hs about their means h̄r and h̄s , can be

expressed by

δhrδhs = ǫ2 (hr − h̄r )(hs − h̄s) (3.21)

Using the above notations, Eq. (3.19) is rewritten to the form

R(h) = R(h̄)+ dR

dhr

∣
∣
∣
∣
h=h̄

ǫ (hr − h̄r )+
1

2

d2R

dhrdhs

∣
∣
∣
∣
h=h̄

ǫ2 (hr − h̄r )(hs − h̄s) = 0 (3.22)

The terms of Eq. (3.19) are explicit, implicit or explicit-implicit functions of the variables h

and τ . Therefore, the first absolute partial derivative R(h) with respect to hr for a fixed r is

presented by

dR

dhr
= ∂f

∂hr
− d

dhr

(

Lx
)

= ∂f

∂hr
− ∂L

∂hr
x− L

dx

dhr
= 0 (3.23)
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Differentiating Eq. (3.23) with respect to hs leads to the mixed second absolutely partial deriva-

tives, expressed by the equation

d2R

dhrdhs
= ∂2f

∂hr∂hs
− ∂2L

∂hr∂hs
x− ∂L

∂hr

dx

dhs
− ∂L

∂hs

dx

dhr
− L

d2x

dhrdhs
= 0 (3.24)

Since variations {δhr } are mutually independent and arbitrary, the hierarchical set of equations

is obtained in the form

R(h̄) = 0

dR

dhr

∣
∣
∣
∣
h=h̄

= 0; r = 1, 2, ..., r̂

d2R

dhrdhs

∣
∣
∣
∣
h=h̄

= 0; r, s = 1, 2, ..., r̂ (3.25)

because of disappearing the zero, first and second derivatives from Eq. (3.19) at {hr } = {h̄r }.
The hierarchical system presented in Eq. (3.25) is made by the following equations: one of the

zeroth-order, r̂ of the first-order and r̂(r̂ + 1)/2 of the second-order. Receiving the mean values

of the second order terms from Eq. (3.22), we have

E

[
d2R

dhrdhs

∣
∣
∣
∣
h=h̄

ǫ2 (hr − h̄r )(hs − h̄s)

]

= ǫ2
d2R

dhrdhs

∣
∣
∣
∣
h=h̄

E[(hr − h̄r )(hs − h̄s)]

= ǫ2
d2R

dhrdhs

∣
∣
∣
∣
h=h̄

Cov(hr , hs) (3.26)

= ǫ2R(2) = 0

Substituting Eq. (3.24) into Eq. (3.26), we get

ǫ2
(

∂2f

∂hr∂hs
− ∂2L

∂hr∂hs
x− ∂L

∂hr

dx

dhs
− ∂L

∂hs

dx

dhr
− L

d2x

dhrdhs

)

Cov(hr , hs) = 0 (3.27)

Because the cross-covariances matrix is symmetrical, the terms ∂L
∂hr

dx
dhs

and ∂L
∂hs

dx
dhr

are equal

after multiplying by [Cov(hr , hs)]. Therefore, the following equation holds
(

∂L

∂hr

dx

dhs
+ ∂L

∂hs

dx

dhr

)

Cov(hr , hs) = 2
∂L

∂hr

dx

dhs
Cov(hr , hs) (3.28)

Using Eqs. (3.27), Eq. (3.26) is rewritten in the form

Lx (2) = f(2) −
[

2
∂L

∂hr

dx

dhs
+ ∂2L

∂hr∂hs
x

]

h=h̄

Cov(hr , hs) (3.29)

Solving the Eqs. (3.22) with respect to L dx
dhr

leads to

L
dx

dhr

∣
∣
∣
∣
h=h̄

=
[

∂f

∂hr
− ∂L

∂hr
x

]

h=h̄

(3.30)

Based on the Eqs. (3.17), (3.29) and (3.30), the hierarchical system of linear perturbation about

the mean values, can be presented as follows

Lx|h=h̄ = f(h̄, τ )

L
dx

dhr

∣
∣
∣
∣
h=h̄

=
[

∂f

∂hr
− ∂L

∂hr
x

]

h=h̄

(3.31)

Lx (2)

∣
∣
∣
∣
h=h̄

= f(2) −
[

2
∂L

∂hr

dx

dhs
+ ∂2L

∂hr∂hs
x

]

h=h̄

Cov(hr , hs)



72 • Stochastic Systems

with r, s = 1, 2, ..., r̂ . The set from Eq. (3.31) consist of the equations: one of the zeroth-order,

r̂ of the first-order and one of the second-order.

Assuming xi be the time-dependent vector of the random variables, the first two central mo-

ments are respectively equal [26] : the mean values for definite time τ = t are

x̄i (t) = xi (h̄; t)+
1

2
x

(2)
i (t) (3.32)

and the cross-covariances for the specific variables xi (for τ = t1), x j (for τ = t2) are, cf. Eq.

(3.16)

Cov
(

xi (t1); x j (t2)
)

= ∂xi (t1)

∂hr

∂x j (t2)

∂hs

∣
∣
∣
∣
h=h̄

Cov(hr , hs)−
1

4
x

(2)
i (t1)x

(2)
j (t2) (3.33)

3.3 System Total Energy and Lagrange’s Equations of the

Second Type

For the general case of the dynamic stochastic analysis the matrices — stiffness Kαβ(hr ),

masses Mαβ(hr ) and damping Dαβ(hr ) and the vector of nodal loads Qα(hr ; τ) are consid-

ered as explicit functions of the random variable vector hr , while the generalized coordinate

vector of the qα(hr ; τ) as an implicit one. Using the above notation, the equation for the total

energy of the system — Eq. (2.35), is rewritten to

L(hr ) = 1

2
q̇Tα (hr ; τ)Mαβ(hr )q̇β(hr ; τ)− 1

2
qα

T(hr ; τ)Kαβ(hr )qβ(hr ; τ)

+ qTα (hr ; τ)Qα(hr ; τ) (3.34)

where α, β = 1, 2, .., N , r = 1, 2, ..., r̂ . Therefore, the Lagrange’s equations of the second

type can be expressed in the form (compare Eq. (2.15))

∂L

∂qα(hr ; τ)
− d

dt

(
∂L

∂ q̇α(hr ; τ)

)

= 0; α = 1, 2, .., N (3.35)

Since the generalized coordinate vector is an implicit function of the random parameters and

time, Eqs. (2.36) and (2.38) read

∂L

∂qα

= −Kαβ(hr )qβ(hr ; τ)+ Qα(hr ; τ) (3.36)

and

d

dt

(
∂L

∂ q̇α

)

= Mαβ(hr )q̈β(hr ; τ) (3.37)

Substituting Eqs. (3.37) and (3.38) into (3.35), including the damping effect, and after rearrang-

ing the similar terms we receive

Mαβ(hr )q̈β(hr ; τ)+ Dαβ(hr )q̇β(hr ; τ)+ Kαβ(hr )qβ(hr ; τ) = Qα(hr ; τ) (3.38)

with Dαβ(hr ) being the damping matrix of the system.
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3.4 Hierarchical Equations of Motion and Equilibrium

For simplification, we begin with the static case, for which the equilibrium equation stands

Kαβ(hr )qβ(hr ) = Qα(hr ) (3.39)

Using Eq. (3.9), we expand the stiffness matrix and the vectors of nodal displacements and

external loads in Taylor series up to the second order around the mean values h̄r

Kαβ(hr ) = Kαβ(h̄)+
[
∂Kαβ

∂hr
δhr +

1

2

∂2Kαβ

∂hr∂hs
δhrδhs

]

h=h̄

qβ(hr ) = qβ(h̄)+
[
dqβ

dhr
δhr +

1

2

d2qβ

dhrdhs
δhrδhs

]

h=h̄

(3.40)

Qα(hr ) = Qα(h̄)+
[
∂Qα

∂hr
δhr +

1

2

∂2Qα

∂hr∂hs
δhrδhs

]

h=h̄

Substituting Eqs. (3.40) into (3.39) and excluding the terms higher than second order, we obtain

Qα(h̄) +
[
∂Qα

∂hr
δhr +

1

2

∂2Qα

∂hr∂hs
δhrδhs

]

h=h̄

= Kαβ(h̄)qβ(h̄)

+
[

Kαβ

dqβ

dhr
+ ∂Kαβ

∂hr
qβ

]

h=h̄

δhr

+ 1

2

[

Kαβ

d2qβ

dhrdhs
+ qβ

∂2Kαβ

∂hr∂hs
+ 2

∂Kαβ

∂hr

dqβ

dhs

]

h=h̄

δhrδhs (3.41)

Comparing the terms in the same order from Eq. (3.41) we receive the hierarchical system of

the equilibrium equations consisting of:

— one system of N linear equation of the zeroth-order

Kαβ(h̄)qβ(h̄) = Qα(h̄) (3.42)

— r̂ systems of N linear equation of the first-order

Kαβ

dqβ

dhr

∣
∣
∣
∣
h=h̄

=
[
∂Qα

∂hr
− ∂Kαβ

∂hr
qβ

]

h=h̄

(3.43)

— one system of N linear equation of the second-order

Kαβ(h̄) q
(2)
β = Q(2)

α − K
(2)
αβ qβ(h̄)− 2

∂Kαβ

∂hr

dqβ

dhs

∣
∣
∣
∣
h=h̄

Cov(hr , hs) (3.44)

Equation (3.44) is obtained by reducing r̂2 systems of equations to the one, because of multi-

plying the second-order terms by the cross-covariances matrix and summing them up.
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Aiming to find the most general form of the time-dependent equations of motion in the stochas-

tic version, the following expressions are needed

Mαβ(hr ) = Mαβ(h̄)+
[
∂Mαβ

∂hr
δhr +

1

2

∂2Mαβ

∂hr∂hs
δhrδhs

]

h=h̄

Dαβ(hr ) = Dαβ(h̄)+
[
∂Dαβ

∂hr
δhr +

1

2

∂2Dαβ

∂hr∂hs
δhrδhs

]

h=h̄

(3.45)

q̇β(hr ; τ) = q̇β(h̄)+
[
dq̇β

dhr
δhr +

1

2

d2q̇β

dhrdhs
δhrδhs

]

h=h̄

q̈β(hr ; τ) = q̈β(h̄)+
[
dq̈β

dhr
δhr +

1

2

d2q̈β

dhrdhs
δhrδhs

]

h=h̄

Putting Eqs. (3.40) and (3.45) into Eg. (3.38) leads to obtain

Qα(h̄; τ) +
[
∂Qα

∂hr
δhr +

1

2

∂2Qα

∂hr∂hs
δhrδhs

]

h=h̄

=

+ Mαβ(h̄)q̈β(h̄; τ)+
[

Mαβ

dq̈β

dhr
+ ∂Mαβ

∂hr
q̈β(τ )

]

h=h̄

δhr

+ 1

2

[

Mαβ

d2q̈β

dhrdhs
+ q̈β(τ )

∂2Mαβ

∂hr∂hs
+ 2

∂Mαβ

∂hr

dq̈β

dhs

]

h=h̄

δhrδhs

+ Dαβ(h̄)q̇β(h̄; τ)+
[

Dαβ

dq̇β

dhr
+ ∂Dαβ

∂hr
q̇β(τ )

]

h=h̄

δhr (3.46)

+ 1

2

[

Dαβ

d2q̇β

dhrdhs
+ q̇β(τ )

∂2Dαβ

∂hr∂hs
+ 2

∂Dαβ

∂hr

dq̇β

dhs

]

h=h̄

δhrδhs

+ Kαβ(h̄)qβ(h̄; τ)+
[

Kαβ

dqβ

dhr
+ ∂Kαβ

∂hr
qβ(τ )

]

h=h̄

δhr

+ 1

2

[

Kαβ

d2qβ

dhrdhs
+ qβ(τ )

∂2Kαβ

∂hr∂hs
+ 2

∂Kαβ

∂hr

dqβ

dhs

]

h=h̄

δhrδhs

The comparison of the same order terms in Eq. (3.47) tends to receiving the hierarchical set of

equations of motion, composing from:

— one system of N equations of the zeroth-order

Qα(h̄; τ) = Mαβ(h̄)q̈β(h̄; τ)+ Dαβ(h̄)q̇β(h̄; τ)+ Kαβ(h̄)qβ(h̄; τ) (3.47)

— r̂ systems of N linear equations of the first-order
[

Mαβ

dq̈β

dhr
+ Dαβ

dq̇β

dhr
+ Kαβ

dqβ

dhr

]

h=h̄

=
[
∂Qα

∂hr
− ∂Mαβ

∂hr
q̈β(τ )− ∂Dαβ

∂hr
q̇β(τ )− ∂Kαβ

∂hr
qβ(τ )

]

h=h̄

(3.48)

— one system of N linear equations of the second-order

Mαβ(h̄)q̈
(2)
β + Dαβ(h̄)q̇

(2)
β + Kαβ(h̄)q

(2)
β = (3.49)

Q(2)
α − q̈β(h̄; τ)M

(2)
αβ − q̇β(h̄; τ)D

(2)
αβ − qβ(h̄; τ)K

(2)
αβ

− 2

[
∂Mαβ

∂hr

dq̈β

dhs
+ ∂Dαβ

∂hr

dq̇β

dhs
+ ∂Kαβ

∂hr

dqβ

dhs

]

h=h̄

Cov(hr , hs)
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3.5 Output Probabilistic Moments

In this section we are aiming to obtain the expectations at any time τ = t for the nodal dis-

placements and the cross-covariances of qα(t1) and qβ(t1), both with including the terms up to

the second order. This can be received by using the Eqs. (3.32) and (3.33). The mean values of

qα(t) are

E[qα(t)] = qα(h̄; t)+ 1

2
q(2)

α (t) (3.50)

and the cross-covariances of variables qα (for τ = t1), qβ (for τ = t2) read

Cov
(

qα(t1); qβ(t2)
)

= dqα(t1)

dhr

dqβ(t2)

dhs

∣
∣
∣
∣
h=h̄

Cov(hr , hs)−
1

4
q(2)

α (t1)q
(2)
β (t2) (3.51)

In accordance with Eqs. (2.2) and (2.3), we can express the strain tensor at any point inside the

element x = xα by

εi j (xα; τ) = Bi jβ(xα)

[

qβ +
dqβ

dhr
δhr +

1

2

d2qβ

dhrdhs
δhrδhs

]

h=h̄

; i, j = 1, 2, 3 (3.52)

The second-order expectation values at any time τ = t and the cross-covariances of the strain

members are obtained in the form

E[εi j (xα; t)] = Bi jβ(xα)

[

qβ(t)+ 1

2
qβ(t)(2)

]

(3.53)

and

Cov
(

εi j (t1) ; εkl(t2)
)

(3.54)

=Bi jαBklβ

[
dqα(t1)

dhr

dqβ(t2)

dhs

∣
∣
∣
∣
h=h̄

Cov(hr , hs)−
1

4
q(2)

α (t1)q
(2)
β (t2)

]

with α, β = 1, 2, ..., N and i, j, k, l = 1, 2, 3.

3.6 Stochastic Sensitivity of Statics and Dynamics

3.6.1 Static Sensitivity

Since the linear elastic complex structure with N degrees of freedom is considered, the static

response can be expressed by the functional

φ = G[qα(ba, hr ), ba] (3.55)

where a = 1, 2, .., A; α = 1, 2, .., N , r = 1, 2, ..., r̄ . The symbols qα, ba, hr are defined

as the vectors of the generalized coordinates, the design variables and the random variables,

respectively. Aiming to present the design sensitivity of the stochastic systems, the equation of

motion for static case — cf. Eqs. (2.95) and (3.40), is rewritten to

Kαβ(ba, hr )qβ(ba, hr ) = Qα(ba, hr ) (3.56)
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In assumption, the stiffness matrix Kαβ and the nodal load vector Qα are explicit functions of

the design parameter and the random variable vectors. Solving Eq. (3.56) with respect to the

qβ (Eq. 3.57) proves that the nodal displacement vector is an implicit function of ba and hr .

qβ(ba, hr ) = K−1αβ (ba, hr )Qα(ba, hr ) (3.57)

Our goal is to estimate the probabilistic distribution of the static structural response with re-

spect to the design parameters. Therefore, we are using Eq. (2.96) to obtain the absolute partial

derivative of the functional φ with respect to ba .

The adjoint variable vector is assumed to be an implicit function of ba and hr and is written

in the form λ = {λα(ba, hr )}, α = 1, 2, ..., N . Owing to that, the adjoint equations (cf. Eq.

2.100) are given as

Kαβ(ba, hr )λβ(ba, hr ) =
∂G

∂qα

(ba, hr ) (3.58)

Using Eq. (3.58) we receive the same solution as for the deterministic system sensitivity —

Eq. (2.103), except that all terms are simultaneously functions of the design parameter and the

random variable vectors now

dφ

dba
= ∂G

∂ba
+ λα

(
∂Qα

∂ba
− ∂Kαβ

∂ba
qβ

)

(3.59)

We are expanding in power series around the means h̄r the vectors of generalized coordinates

qα and the nodal loads Qα and the stiffness matrix Kαβ , respectively as

qβ(ba; hr ) = qβ(h̄)+
[
dqβ

dhr
δhr +

1

2

d2qβ

dhrdhs
δhrδhs

]

h=h̄

Qα(ba; hr ) = Qα(h̄)+
[
∂Qα

∂hr
δhr +

1

2

∂2Qα

∂hr∂hs
δhrδhs

]

h=h̄

Kαβ(ba; hr ) = Kαβ(h̄)+
[
∂Kαβ

∂hr
δhr +

1

2

∂2Kαβ

∂hr∂hs
δhrδhs

]

h=h̄

(3.60)

To including the influence of the randomness in the design parameters like material, geometry,

etc. on the final results of the computation, the adjoint variable vector is expanded in Taylor

series up to the second order around the mean values of the random variables h̄r

λα(ba, hr ) = λα(h̄)+
[
dλα

dhr
δhr +

1

2

d2λα

dhrdhs
δhrδhs

]

h=h̄

(3.61)

Expanding in power series up to the second order, the first partial derivative of the functional

with respect to the generalized coordinate vector, yields to

∂G

∂qα

(ba, hr ) =
∂G

∂qα

(h̄)+
[

∂2G

∂hr∂qα

δhr +
1

2

∂3G

∂hr∂hs∂qα

δhrδhs

]

h=h̄

(3.62)

Substituting Eqs. (3.58) into Eq. (3.54) and Eqs. (3.58)3, (3.59) and (3.60) into Eq.(3.56) and

comparing the same order terms, gives the primary and adjoint systems of equations [35]
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— one pair of systems of N linear algebraic equations of zeroth-order

Kαβ(ba, h̄)qβ(ba, h̄) = Qα(ba, h̄)

Kαβ(ba, h̄)λβ(ba, h̄) = ∂G

∂qα

(ba, h̄) (3.63)

— r̂ pairs of systems of N linear algebraic equations of the first-order

Kαβ(ba, h̄)
dqβ

dba, dhr
= ∂Qα

∂hr
(dba, h̄)− ∂Kαβ

∂hr
(ba, h̄)qβ(ba, h̄)

Kαβ(ba, h̄)
dλβ

dba, dhr
= ∂G2

∂hr∂qα

(ba, h̄)− ∂Kαβ

∂hr
(ba, h̄)λβ(ba, h̄) (3.64)

— one pair of systems of N linear algebraic equations of the second-order

Kαβ(ba, h̄) q
(2)
β (ba, h̄) = Q(2)

α (ba, h̄)− K
(2)
αβ (ba, h̄)qβ(ba, h̄)

−2∂Kαβ

∂hr
(ba, h̄)

dqβ

dhs
(ba, h̄)Cov(hr , hs)

Kαβ(ba, h̄) λ
(2)
β (ba, h̄) =

[
∂G3

∂hr∂hs∂qα

(ba, h̄)− 2
∂Kαβ

∂hr
(ba, h̄)

dλβ

dhs
(ba, h̄)

]

×Cov(hr , hs)− K
(2)
αβ (ba, h̄)λβ(ba, h̄)

(3.65)

From the definition [26,27,35], the first probabilistic moment for the sensitivity gradient can be

expressed as

E

[
dφ

dba

]

=
∫ +∞

−∞

∫ +∞

−∞
...

∫ +∞

−∞
︸ ︷︷ ︸

A−fold

dφ

dba
pA(b1, b2, ..., bA)db1db2...dbA (3.66)

and the second probabilistic moment is respectively equal

Cov

(
dφ

dba
,
dφ

dbb

)

= E

[(
dφ

dba
− E

[
dφ

dba

])(
dφ

dbb
− E

[
dφ

dbb

])]

(3.67)

Substituting Eq. (3.59) into Eqs. (3.66) and (3.67), the mean value of sensitivity gradient may

be written as

E

[
dφ

dba

]

= E

[
∂G

∂ba
+ λα

(
∂Qα

∂ba
− ∂Kαβ

∂ba
qβ

)]

= E

[
∂G

∂ba

]

+ E

[

λα

∂Qα

∂ba

]

− E

[

λα

∂Kαβ

∂ba
qβ

]

(3.68)

while the covariances-matrix is given in the form

Cov

(
dφ

dba
,
dφ

dbb

)

= E

[(
∂G

∂ba
+ λα

(
∂Qα

∂ba
− ∂Kαβ

∂ba
qβ

)

− E

[
dφ

dba

])

×
(

∂G

∂bb
+ λγ

(
∂Qγ

∂bb
− ∂Kγ δ

∂bb
qδ

)

− E

[
dφ

dbb

])]

(3.69)
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In order to determine the Eqs. (3.68) and (3.69), the partial derivatives of the gradient sensitiv-

ity, the stiffness matrix and the nodal load vector with respect to the design variable vector, are

expanded in Taylor series up to the second order around the means h̄r

∂G

∂ba
(ba, hr ) = ∂G

∂ba
(h̄)+

[
∂2G

∂hr∂ba
δhr +

1

2

∂3G

∂hr∂hs∂ba
δhrδhs

]

h=h̄

∂Kαβ

∂ba
(ba, hr ) = ∂Kαβ

∂ba
(h̄)+

[
∂2Kαβ

∂hr∂ba
δhr +

1

2

∂3Kαβ

∂hr∂hs∂ba
δhrδhs

]

h=h̄

(3.70)

∂Qα

∂ba
(ba, hr ) = ∂Qα

∂ba
(h̄)+

[
∂2Qα

∂hr∂ba
δhr +

1

2

∂3Qα

∂hr∂hs∂ba
δhrδhs

]

h=h̄

The mean value of ∂G/∂ba is equal

E

[
∂G

∂ba

]

= ∂G

∂ba
(h̄)+ 1

2

∂3G

∂hr∂hs∂ba

∣
∣
∣
∣
h=h̄

Cov(hr , hs) (3.71)

Using Eqs. (3.61) and (3.70)3, the product λα
∂Qα

∂ba
limited to the second order terms is received

as

λα

∂Qα

∂ba
= λα(h̄)

∂Qα

∂ba
(h̄)+

[

λα

∂2Qα

∂hr∂ba
+ dλα

dhr

∂Qα

∂ba

]

h=h̄

δhr (3.72)

+ 1

2

[

λα

∂3Qα

∂hr∂hs∂ba
+ 2

dλα

dhr

∂2Qα

∂hs∂ba
+ d2λα

dhrdhs

∂Qα

∂ba

]

h=h̄

δhrδhs

Analogically, after multiplying Eqs. (3.61), (3.70)2 and (3.60)1 and excluding the terms higher

than second order, we obtain

λα

∂Kαβ

∂ba
qβ = λα(h̄)

∂Kαβ

∂ba
(h̄)qβ(h̄) (3.73)

+
[

λα

(
∂2Kαβ

∂hr∂ba
qβ +

∂Kαβ

∂ba

dqβ

dhr

)

+ dλα

dhr

∂Kαβ

∂ba
qβ

]

h=h̄

δhr

+
[
1

2

(

λα

∂3Kαβ

∂hr∂hs∂ba
+ 2

dλα

dhr

∂2Kαβ

∂hs∂ba
+ d2λα

dhrdhs

∂Kαβ

∂ba

)

qβ

+
(

λα

∂2Kαβ

∂hr∂ba
+ dλα

dhr

∂Kαβ

∂ba

)
dqβ

dhs
+ 1

2
λα

∂Kαβ

∂ba

d2qβ

dhrdhs

)]

h=h̄

δhrδhs

The mean values of Eq. (3.72) is equal,

E

[

λα

∂Qα

∂ba

]

= λα(h̄)
∂Qα

∂ba
(h̄)+ 1

2
λ(2)

α

∂Qα

∂ba

+1

2

[

λα

∂3Qα

∂hr∂hs∂ba
+ 2

dλα

dhr

∂2Qα

∂hs∂ba

]

h=h̄

Cov(hr , hs) (3.74)
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Similarly, for Eq. (3.73) we have

E

[

λα

∂Kαβ

∂ba
qβ

]

= λα(h̄)
∂Kαβ

∂ba
(h̄)qβ(h̄)+ 1

2

(

λ(2)
α

∂Kαβ

∂ba
qβ(h̄)+ λα(h̄)

∂Kαβ

∂ba
(h̄)q

(2)
β

)

+1

2

[

λα

(
∂3Kαβ

∂hr∂hs∂ba
qβ + 2

∂2Kαβ

∂hr∂ba

dqβ

dhs

)

(3.75)

+2dλα

dhr

(
∂2Kαβ

∂hs∂ba
qβ +

∂Kαβ

∂ba

dqβ

dhs

)]

h=h̄

Cov(hr , hs)

Substituting Eqs. (3.71), (3.74) and (3.75) into Eq. (3.68) results in obtaining the mean values

of the sensitivity gradient expression

E

[
dφ

dba

]

= ∂G

∂ba
(h̄)− 1

2
λα(h̄)

∂Kαβ

∂ba
(h̄)q

(2)
β

+
(

λα(h̄)+ 1

2
λ(2)

α

)(
∂Qα

∂ba
(h̄)− ∂Kαβ

∂ba
(h̄)qβ(h̄)

)

+ 1

2

[
∂3G

∂hr∂hs∂ba
+ 2

dλα

dhr

(
∂2Qα

∂hs∂ba
− ∂2Kαβ

∂hs∂ba
qβ −

∂Kαβ

∂ba

dqβ

dhs

)

+ λα

(
∂3Qα

∂hr∂hs∂ba
− ∂3Kαβ

∂hr∂hs∂ba
qβ − 2

∂2Kαβ

∂hr∂ba

dqβ

dhs

)]

h=h̄

Cov(hr , hs) (3.76)

By entering the following notations

Aαa = ∂Qα

∂ba
(h̄)− ∂Kαβ

∂ba
(h̄)qβ(h̄) (3.77)

Bαsa = ∂2Qα

∂hs∂ba
− ∂2Kαβ

∂hs∂ba
qβ(h̄)− ∂Kαβ

∂ba
(h̄)

dqβ

dhs

Cαrsa = ∂3Qα

∂hr∂hs∂ba
− ∂3Kαβ

∂hr∂hs∂ba
qβ(h̄)− 2

∂2Kαβ

∂hr∂ba

dqβ

dhs

Eq. (3.76) can be written in a simpler form as

E

[
dφ

dba

]

= ∂G

∂ba
− 1

2
λα(h̄)

∂Kαβ

∂ba
q

(2)
β + Aαa

(

λα(h̄)+ 1

2
λ(2)

α

)

(3.78)

+ 1

2

[
∂3G

∂hr∂hs∂ba
+ 2

dλα

dhr
Bαsa + λαCαrsa

]

h=h̄

Cov(hr , hs)

Analogically to Eq. (3.78), the equation for E

[

dφ
dbb

]

reads

E

[
dφ

dbb

]

= ∂G

∂bb
− 1

2
λγ (h̄)

∂Kγ δ

∂bb
q

(2)
δ + Aγ b

(

λγ (h̄)+ 1

2
λ(2)

γ

)

(3.79)

+1

2

[
∂3G

∂hr∂hs∂bb
+ 2

dλγ

dhr
Bγ sb + λγ Cγ rsb

]

h=h̄

Cov(hr , hs)
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After multiplying the particular members in Eq. (3.69), the formula for the covariances can be

written in the form

Cov

(
dφ

dba
,
dφ

dbb

)

= E

[
∂G

∂ba

∂G

∂bb
+ ∂G

∂ba
λγ

(
∂Qγ

∂bb
− ∂Kγ δ

∂bb
qδ

)

+ ∂G

∂bb
λα

(
∂Qα

∂ba
− ∂Kαβ

∂ba
qβ

)

−λα

(
∂Qα

∂ba
− ∂Kαβ

∂ba
qβ

)

E

[
dφ

dbb

]

− λγ

(
∂Qγ

∂bb
− ∂Kγ δ

∂bb
qδ

)

E

[
dφ

dba

]

+λαλγ

(
∂Qα

∂ba
− ∂Kαβ

∂ba
qβ

)(
∂Qγ

∂bb
− ∂Kγ δ

∂bb
qδ

)

− ∂G

∂ba
E

[
dφ

dbb

]

− ∂G

∂bb
E

[
dφ

dba

]

+ E

[
dφ

dba

]

E

[
dφ

dbb

]]

(3.80)

From now on, the terms E[dφ/dba] and E[dφ/dbb] are treated as the final products, given by

Egs. (3.78) and (3.79). Therefore they are not developed during the consideration of following

expressions. For simplification, all members of (Eq. 3.80) are initially received by using Eqs.

(3.60), (3.61) and (3.70) with including the terms only to the second-order. After ordering indi-

vidual terms, first formula is

E

[
∂G

∂ba

∂G

∂bb

]

= ∂G

∂ba
(h̄)

∂G

∂bb
(h̄)+ 1

2

[
∂G

∂ba

∂3G

∂hr∂hs∂bb
+ ∂G

∂bb

∂3G

∂hr∂hs∂ba

+2 ∂2G

∂hr∂ba

∂2G

∂hs∂bb

]

h=h̄

Cov(hr , hs) (3.81)

The second and the third terms, due to the similarity, are obtained together in the form

E

[

λγ

∂G

∂ba

(
∂Qγ

∂bb
− ∂Kγ δ

∂bb
qδ

)]

+ E

[

λα

∂G

∂bb

(
∂Qα

∂ba
− ∂Kαβ

∂ba
qβ

)]

=

λγ (h̄)
∂G

∂ba
(h̄)Aγ b + λα(h̄)

∂G

∂bb
(h̄)Aαa

+ 1

2

{

Aγ b

[

2
∂2G

∂hr∂ba

dλγ

dhs
+ ∂G

∂ba

d2λγ

dhrdhs
+ λγ

∂3G

∂hr∂hs∂ba

]

h=h̄

+ Aαa

[

2
∂2G

∂hr∂bb

dλα

dhs
+ ∂G

∂bb

d2λα

dhrdhs
+ λα

∂3G

∂hr∂hs∂bb

]

h=h̄

+ λγ (h̄)
∂G

∂ba
(h̄)

[

Cγ rsb −
∂Kγ δ

∂bb

d2qδ

dhrdhs

]

h=h̄

+λα(h̄)
∂G

∂bb
(h̄)

[

Cαrsa −
∂Kαβ

∂ba

d2qβ

dhrdhs

]

h=h̄

+ 2Bγ sb

[

λγ

∂2G

∂hr∂ba
+ ∂G

∂ba

dλγ

dhr

]

h=h̄

+2Bαsa

[

λα

∂2G

∂hr∂bb
+ ∂G

∂bb

dλα

dhr

]

h=h̄

}

Cov(hr , hs) (3.82)
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The fourth equation is given by

E

[

λαλγ

(
∂Qα

∂ba
− ∂Kαβ

∂ba
qβ

)(
∂Qγ

∂bb
− ∂Kγ δ

∂bb
qδ

)]

=

= λα(h̄)λγ (h̄)AαaAγ b

+ 1

2

{

λα(h̄)λγ (h̄)

(

Aαa

[

Cγ rsb −
∂Kγ δ

∂bb

d2qδ

dhrdhs

]

h=h̄

+ 2BαraBγ sb

)

+ λα(h̄)λγ (h̄)Aγ b

[

Cαrsa −
∂Kαβ

∂ba

d2qβ

dhrdhs

]

h=h̄

+ AαaAγ b

[

λα

d2λγ

dhrdhs
+ λγ

d2λα

dhrdhs
+ 2

dλα

dhr

dλγ

dht

]

h=h̄

+ 2

(

λα(h̄)
dλγ

dhr
+ λγ (h̄)

dλα

dhr

)(

AαaBγ sb + Aγ bBαsa

)}

Cov(hr , hs) (3.83)

Five and six members, are gained simultaneously

E

[
∂G

∂ba
E

[
dφ

dbb

]]

+E

[
∂G

∂bb
E

[
dφ

dba

]]

=
(

∂G

∂ba
(h̄)+ 1

2

∂3G

∂hr∂hs∂ba

∣
∣
∣
∣
h=h̄

Cov(hr , hs)

)

E

[
dφ

dbb

]

+
(

∂G

∂bb
(h̄)+ 1

2

∂3G

∂hr∂hs∂bb

∣
∣
∣
∣
h=h̄

Cov(hr , hs)

)

E

[
dφ

dba

]

(3.84)

The last two equations are achieve as

E

[

λα

(
∂Qα

∂ba
− ∂Kαβ

∂ba
qβ

)

E

[
dφ

dbb

]]

+ E

[

λγ

(
∂Qγ

∂bb
− ∂Kγ δ

∂bb
qδ

)

E

[
dφ

dba

]]

=

λα(h̄)AαaE

[
dφ

dbb

]

+ λγ (h̄)AαbE

[
dφ

dba

]

+ 1

2

{(

λα(h̄)

[

Cαrsa −
∂Kαβ

∂ba

d2qβ

dhrdhs

]

h=h̄

+ Aαa

d2λα

dhrdhs
+ 2

dλα

dhr
Bαsa

)

E

[
dφ

dbb

]

+
(

λγ (h̄)

[

Cγ rsb −
∂Kγ δ

∂bb

d2qδ

dhrdhs

]

h=h̄

+ Aαb

d2λγ

dhrdhs
+ 2

dλγ

dhr
Bαsb

)

E

[
dφ

dba

]}

× Cov(hr , hs) (3.85)

Eqs. (3.86)-(3.90) are substituting to Eq. (3.85), the covariances expression with including the
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terms up to second order is obtained (Eq. 3.91)

Cov

(
dφ

dba
,
dφ

dbb

)

= ∂G

∂ba
(h̄)

∂G

∂bb
(h̄)+ λγ (h̄)

∂G

∂ba
(h̄)Aγ b + λα(h̄)

∂G

∂bb
(h̄)Aαa (3.86)

+λα(h̄)λγ (h̄)AαaAγ b

+1

2

{[
∂G

∂ba

∂3G

∂hr∂hs∂bb
+ ∂G

∂bb

∂3G

∂hr∂hs∂ba
+ 2

∂2G

∂hr∂ba

∂2G

∂hs∂bb

]

h=h̄

+Aγ b

[

2
∂2G

∂hr∂ba

dλγ

dhs
+ ∂G

∂ba

d2λγ

dhrdhs
+ λγ

∂3G

∂hr∂hs∂ba

]

h=h̄

+λγ (h̄)
∂G

∂ba
(h̄)

[

Cγ rsb −
∂Kγ δ

∂bb

d2qδ

dhrdhs

]

h=h̄

+2Bγ sb

[

λγ

∂2G

∂hr∂ba
+ ∂G

∂ba

dλγ

dhr

]

h=h̄

+ 2Bαsa

[

λα

∂2G

∂hr∂bb
+ ∂G

∂bb

dλα

dhr

]

h=h̄

+Aαa

[

2
∂2G

∂hr∂bb

dλα

dhs
+ ∂G

∂bb

d2λα

dhrdhs
+ λα

∂3G

∂hr∂hs∂bb

]

h=h̄

+λα(h̄)
∂G

∂bb
(h̄)

[

Cαrsa −
∂Kαβ

∂ba

d2qβ

dhrdhs

]

h=h̄

}

+λα(h̄)λγ (h̄)

(

Aαa

[

Cγ rsb −
∂Kγ δ

∂bb

d2qδ

dhrdhs

]

h=h̄

+ 2BαraBγ sb

)

+λα(h̄)λγ (h̄)Aγ b

[

Cαrsa −
∂Kαβ

∂ba

d2qβ

dhrdhs

]

h=h̄

+AαaAγ b

[

λα

d2λγ

dhrdhs
+ λγ

d2λα

dhrdhs
+ 2

dλα

dhr

dλγ

dht

]

h=h̄

+2
(

λα(h̄)
dλγ

dhr
+ λγ (h̄)

dλα

dhr

)(

AαaBγ sb + Aγ bBαsa

)}

Cov(hr , hs)

−
{

λα(h̄)Aαa +
1

2

(

λα(h̄)

[

Cαrsa −
∂Kαβ

∂ba

d2qβ

dhrdhs

]

h=h̄

+Aαa

d2λα

dhrdhs
+ 2

dλα

dhr
Bαsa

)

Cov(hr , hs)

}

E

[
dφ

dbb

]

−
{

λγ (h̄)Aαb +
1

2

(

λγ (h̄)

[

Cγ rsb −
∂Kγ δ

∂bb

d2qδ

dhrdhs

]

h=h̄

+Aαb

d2λγ

dhrdhs
+ 2

dλγ

dhr
Bαsb

)

Cov(hr , hs)

}

E

[
dφ

dba

]

−
(

∂G

∂ba
(h̄)+ 1

2

∂3G

∂hr∂hs∂ba

∣
∣
∣
∣
h=h̄

Cov(hr , hs)

)

E

[
dφ

dbb

]

−
(

∂G

∂bb
(h̄)+ 1

2

∂3G

∂hr∂hs∂bb

∣
∣
∣
∣
h=h̄

Cov(hr , hs)

)

E

[
dφ

dba

]

+E

[
dφ

dba

]

E

[
dφ

dbb

]
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3.6.2 Time Instant Sensitivity

In time instant sensitivity analysis the system response at the time τ = t is adopted as the series

of successive impulses in infinitely small time (cf. Eq. (2.153))

φ =
∫ t

0

G[qα(ba, hr , τ ); ba]δ(t − τ)dτ, (3.87)

where t ǫ [ 0, T ]; β = 1, 2, ..., N ; a = 1, 2, ..., A; r = 1, 2, ..., r̄ . The expression δ(t − τ)

denotes the Dirac-δ distribution. The function G[ qβ(ba, τ ); ba ] is supposed to be continuous

in the whole time interval [ 0, T ] and continuously differentiable with respect to qα, ba and hr .

Aiming to the time instant sensitivity by using the random variables, Eq. (2.89) is rewritten to

Mαβ(ba; hr )q̈β(ba; hr ; τ)+ Dαβ(ba; hr )q̇β(ba; hr ; τ) + Kαβ(ba; hr )qβ(ba, hr ; τ)

= Qα(ba; hr ; τ) (3.88)

with the initial conditions in the form

qα(ba, hr ; 0) = 0; q̇α(ba, hr ; 0) = 0 (3.89)

Eq. (3.88) describes the equations of motion in the stochastic finite element method (SFEM).

Differentiating Eq. (3.87) with respect to ba by using the chain rule of differentiation leads to

φ =
∫ t

0

(
∂G

∂ba
+ ∂G

∂qα

dqα

dba

)

δ(t − τ)dτ, (3.90)

Because of τ = t in time instant sensitivity, we have

∫ t

0

∂G

∂ba
(ba, hr , τ )δ(t − τ)dτ = ∂G

∂ba
(ba, hr , t) (3.91)

Substituting Eq.(3.91) to Eq. (3.90) gives

φ = ∂G

∂ba
(t)+

∫ t

0

∂G

∂qα

dqα

dba
δ(t − τ)dτ ; t ∈ [0, T ] (3.92)

Following the same lines as in Sections 2.5.5 and 2.5.6 we received the adjoint equations of

motion in the form as [35]

Mαβ(ba, hr )λ̈α(ba, hr ; τ)− Dαβ(ba, hr )λ̇α(ba, hr ; τ) + Kαβ(ba, hr )λα(ba, hr ; τ)

= ∂G

∂qβ

(ba, hr ; t)δ(t − τ) (3.93)

with the terminal conditions

λα(ba, hr ; t) = 0; λ̇α(ba, hr ; t) = 0; τ = [0, t]; t = [0, T ] (3.94)

To avoid unnecessary derivations, we use the expression for dynamic sensitivity gradient in

deterministic systems Eq. (2.160) and rewritten it including the random parameters to the form

[35]

dφ

dba
(ba, hr ; t)=

∂G

∂ba
(ba, hr ; t)+

∫ t

0

λα(ba, hr , τ )

[
∂Qα(ba, hrτ)

∂ba
(3.95)

−∂Mαβ(ba, hr )

∂ba
q̈β(τ )− ∂Dαβ(ba, hr )

∂ba
q̇β(τ )− ∂Kαβ(ba, hr )

∂ba
qβ(τ )

]

dτ

for any fixed time t ǫ [ 0, T ].
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Firstly, using Eq. (3.9), we expand the general coordinate vector and adjoint vector in Taylor

series up to the second order around the mean values h̄r

qβ(ba, hr ; τ) = qβ(h̄)+
[
dqβ

dhr
δhr +

1

2

d2qβ

dhrdhs
δhrδhs

]

h=h̄

λβ(ba, hr ; τ) = λβ(h̄)+
[
dλβ

dhr
δhr +

1

2

d2λβ

dhrdhs
δhrδhs

]

h=h̄

(3.96)

secondly, the second order expansions of their first and second derivatives are received

q̇β(ba, hr ; τ) = q̇β(h̄)+
[
dq̇β

dhr
δhr +

1

2

d2q̇β

dhrdhs
δhrδhs

]

h=h̄

λ̇β(ba, hr ; τ) = λ̇β(h̄)+
[
dλ̇β

dhr
δhr +

1

2

d2λ̇β

dhrdhs
δhrδhs

]

h=h̄

q̈β(ba, hr ; τ) = q̈β(h̄)+
[
dq̈β

dhr
δhr +

1

2

d2q̈β

dhrdhs
δhrδhs

]

h=h̄

λ̈β(ba, hr ; τ) = λ̈β(h̄)+
[
dλ̈β

dhr
δhr +

1

2

d2λ̈β

dhrdhs
δhrδhs

]

h=h̄

(3.97)

then, the second-order power series is written for the functions ∂G/∂qα, Qα, Mαβ, Kαβ and

Dαβ to obtain

∂G

∂qα

(ba, hr ; τ) = ∂G

∂qα

(h̄)+
[

∂2G

∂hr∂qα

δhr +
1

2

∂3G

∂hr∂hs∂qα

δhrδhs

]

h=h̄

Qα(ba, hr ; τ) = Qα(h̄)+
[
∂Qα

∂hr
δhr +

1

2

∂2Qα

∂hr∂hs
δhrδhs

]

h=h̄

Mαβ(ba, hr ) = Mαβ(h̄)+
[
∂Mαβ

∂hr
δhr +

1

2

∂2Mαβ

∂hr∂hs
δhrδhs

]

h=h̄

Kαβ(ba, hr ) = Kαβ(h̄)+
[
∂Kαβ

∂hr
δhr +

1

2

∂2Kαβ

∂hr∂hs
δhrδhs

]

h=h̄

Dαβ(ba, hr ) = Dαβ(h̄)+
[
∂Dαβ

∂hr
δhr +

1

2

∂2Dαβ

∂hr∂hs
δhrδhs

]

h=h̄

(3.98)

Substituting Eqs. (3.96)-(3.18) into Eqs. (3.93) and (3.95), and comparing the terms with the

same order leads to the hierarchical systems of equations for stochastic dynamic sensitivity

problem [35]. That way, we obtain

— one pair of systems of N linear differential equations of the zeroth-order

Mαβ(ba, h̄)q̈β(ba, h̄; τ) + Dαβ(ba, h̄)q̇β(ba, h̄; τ)+ Kαβ(ba, h̄)qβ(ba, h̄; τ)

=Qα(ba, h̄; τ) (3.99)

Mαβ(ba, h̄)λ̈β(ba, h̄; τ) − Dαβ(ba, h̄)λ̇β(ba, h̄; τ)+ Kαβ(ba, h̄)λβ(ba, h̄; τ)

= ∂G

∂qα

(ba, h̄; t)δ(t − τ)
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— r̂ pairs of systems of N linear differential equations of the first-order

Mαβ(ba, h̄)
dq̈β

dhr
(ba, h̄; τ) + Dαβ(ba; h̄)

dq̇β

dhr
(ba, h̄; τ)+ Kαβ(ba, h̄)

dqβ

dhr
(ba, h̄; τ)

= ∂Qα

∂hr
(ba, h̄; τ)− ∂Mαβ

∂hr
(ba, h̄)q̈β(ba, h̄; τ) (3.100)

−∂Dαβ

∂hr
(ba, h̄)q̇β(ba, h̄; τ)− ∂Kαβ

∂hr
(ba, h̄)qβ(ba, h̄; τ)

Mαβ(ba, h̄)
dλ̈β

dhr
(ba, h̄; τ) + Dαβ(ba; h̄)

dλ̇β

dhr
(ba, h̄; τ)+ Kαβ(ba, h̄)

dλβ

dhr
(ba, h̄; τ)

= ∂2G

∂hr∂qα

(ba, h̄; t)δ(t − τ)− ∂Mαβ

∂hr
(ba, h̄)λ̈β(ba, h̄; τ)

−∂Dαβ

∂hr
(ba, h̄)λ̇β(ba, h̄; τ)− ∂Kαβ

∂hr
(ba, h̄)λβ(ba, h̄; τ)

— one pair of systems of N linear differential equations of the second-order

Mαβ(ba, h̄)q̈
(2)
β (ba, h̄; τ) + Dαβ(ba, h̄)q̇

(2)
β (ba, h̄; τ)+ Kαβ(ba, h̄)q

(2)
β (ba, h̄; τ)

= Q(2)
α (ba, h̄; τ)− q̈β(ba, h̄; τ)M

(2)
αβ (ba, h̄)

−q̇β(ba, h̄; τ)D
(2)
αβ (ba, h̄)− qβ(ba, h̄; τ)K

(2)
αβ (ba, h̄)

−2
[
∂Mαβ

∂hr
(ba, h̄)

dq̈β

dhs
(ba, h̄; τ)

+∂Dαβ

∂hr
(ba, h̄)

dq̇β

dhs
(ba, h̄; τ)

+∂Kαβ

∂hr
(ba, h̄)

dqβ

dhs
(ba, h̄; τ)

]

Cov(hr , hs) (3.101)

Mαβ(ba, h̄)λ̈
(2)
β (ba, h̄; τ) + Dαβ(ba, h̄)λ̇

(2)
β (ba, h̄; τ)+ Kαβ(ba, h̄)λ

(2)
β (ba, h̄; τ)

= ∂3G

∂hr∂hs∂qα

(ba, h̄; t)δ(t − τ)Cov(hr , hs)

−λ̈β(ba, h̄; τ)M
(2)
αβ (ba, h̄)− λ̇β(ba, h̄; τ)D

(2)
αβ (ba, h̄)

−λβ(ba, h̄; τ)K
(2)
αβ (ba, h̄)

−2
[
∂Mαβ

∂hr
(ba, h̄)

dλ̈β

dhs
(ba, h̄; τ)

+∂Dαβ

∂hr
(ba, h̄)

dλ̇β

dhs
(ba, h̄; τ)

+∂Kαβ

∂hr
(ba, h̄)

dλβ

dhs
(ba, h̄; τ)

]

Cov(hr , hs)

The mean value of Eq. (3.95) is expressed by the equation.

E

[
dφ

dba

]

= E

[
∂G

∂ba

]

+
∫ t

0

(

E

[

λα

∂Qα

∂ba

]

− E

[

λα

∂Mαβ

∂ba
q̈β

]

(3.102)

−E

[

λα

∂Dαβ

∂ba
q̇β

]

− E

[

λα

∂Kαβ

∂ba
qβ

])

dτ
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for any fixed time t ǫ [ 0, T ]. To find the means of stochastic dynamic sensitivity gradient the

functions ∂G/∂ba , ∂Q/∂ba , ∂M/∂ba and ∂D/∂ba are expanded in Taylor series up to second

order

∂G

∂ba
(ba, hr ; t) = ∂G

∂ba
(h̄)+

[
∂2G

∂hr∂ba
δhr +

1

2

∂3G

∂hr∂hs∂ba
δhrδhs

]

h=h̄

∂Q

∂ba
(ba, hr ; τ) = ∂Q

∂ba
(h̄)+

[
∂2Q

∂hr∂ba
δhr +

1

2

∂3Q

∂hr∂hs∂ba
δhrδhs

]

h=h̄

∂M

∂ba
(ba, hr ) = ∂M

∂ba
(h̄)+

[
∂2M

∂hr∂ba
δhr +

1

2

∂3M

∂hr∂hs∂ba
δhrδhs

]

h=h̄

∂D

∂ba
(ba, hr ) = ∂D

∂ba
(h̄)+

[
∂2D

∂hr∂ba
δhr +

1

2

∂3D

∂hr∂hs∂ba
δhrδhs

]

h=h̄

(3.103)

The terms of Eq. (3.102) is obtained analogically to Eqs. (3.74) and (3.75) and for fixed time

t ǫ [ 0, T ] we have [35]

E

[
dφ

dba

]

=
[

∂G

∂ba
(t)

]

h=h̄

(3.104)

+
∫ t

0

[

λα(h̄)

(
∂Qα

∂ba
− ∂Kαβ

∂ba
qβ −

∂Mαβ

∂ba
q̈β −

∂Dαβ

∂ba
q̇β

)

+1

2
λ(2)

α

(
∂Qα

∂ba
− ∂Kαβ

∂ba
qβ −

∂Mαβ

∂ba
q̈β −

∂Dαβ

∂ba
q̇β

−1

2
λα

(
∂Kαβ

∂ba
q

(2)
β + ∂Mαβ

∂ba
q̈

(2)
β + ∂Dαβ

∂ba
q̇

(2)
β

)

+
[
1

2
λα

(
∂3Qα

∂hr∂hs∂ba
− ∂3Kαβ

∂hr∂hs∂ba
qβ −

∂3Mαβ

∂hr∂hs∂ba
q̈β −

∂3Dαβ

∂hr∂hs∂ba
q̇β

−2 ∂2Kαβ

∂hr∂ba

dqβ

dhs
− 2

∂2Mαβ

∂hr∂ba

dq̈β

dhs
− 2

∂2Dαβ

∂hr∂ba

dq̇β

dhs

)

+ 1

2

∂3G

∂hr∂hs∂ba

+dλα

dhr

(
∂2Qα

∂hs∂ba
− ∂2Kαβ

∂hs∂ba
qβ −

∂2Mαβ

∂hs∂ba
q̈β −

∂2Dαβ

∂hs∂ba
q̇β −

∂Kαβ

∂ba

dqβ

dhs

−∂Mαβ

∂ba

dq̈β

dhs
− ∂Dαβ

∂ba

dq̇β

dhs

)]

Cov(hr , hs)

]

h=h̄

dτ

Introducing the following notations

Aαa(τ ) = ∂Qα

∂ba
(τ )−Dαa(τ )

Bαrsa(τ ) = ∂3Qα

∂hr∂hs∂ba
(τ )− Fαrsa(τ )− 2Hαrsa(τ )

Cαsa(τ ) = ∂2Qα

∂hs∂ba
(τ )− Kαsa(τ )− Lαsa(τ )

Dαa(τ ) = ∂Kαβ

∂ba
qβ(τ )+ ∂Mαβ

∂ba
q̈β(τ )+ ∂Dαβ

∂ba
q̇β(τ )

Eαa(τ ) = ∂Kαβ

∂ba
q

(2)
β (τ )+ ∂Mαβ

∂ba
q̈

(2)
β (τ )+ ∂Dαβ

∂ba
q̇

(2)
β (τ )
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Fαrsa(τ ) = ∂3Kαβ

∂hr∂hs∂ba
qβ(τ )+ ∂3Mαβ

∂hr∂hs∂ba
q̈β(τ )+ ∂3Dαβ

∂hr∂hs∂ba
q̇β(τ )

Hαrsa(τ ) = ∂2Kαβ

∂hr∂ba

dqβ

dhs
(τ )+ ∂2Mαβ

∂hr∂ba

dq̈β

dhs
(τ )+ ∂2Dαβ

∂hr∂ba

dq̇β

dhs
(τ )

Kαsa(τ ) = ∂2Kαβ

∂hs∂ba
qβ(τ )+ ∂2Mαβ

∂hs∂ba
q̈β(τ )+ ∂2Dαβ

∂hs∂ba
q̇β(τ )

Lαsa(τ ) = ∂Kαβ

∂ba

dqβ

dhs
(τ )+ ∂Mαβ

∂ba

dq̈β

dhs
(τ )+ ∂Dαβ

∂ba

dq̇β

dhs
(τ ) (3.105)

Eq. (3.108) is rewritten to the form

E

[
dφ

dba

]

=
[

∂G

∂ba
(t)

]

h=h̄

(3.106)

+
∫ t

0

[(

λα +
1

2
λ(2)

α

)

Aαa −
1

2
λαEαa

+
[
1

2
λαBαrsa +

1

2

∂3G

∂hr∂hs∂ba
+ dλα

dhr
Cαsa

]

Cov(hr , hs)

]

h=h̄

dτ

Analogically to the Eq. (3.110), the formula for E[dφ/dbb] is given by

E

[
dφ

dbb

]

=
[

∂G

∂bb
(t2)+

1

2

∂3G

∂ht∂hu∂bb
(t)Cov(ht , hu)

]

h=h̄

(3.107)

+
∫ t

0

[(

λβ +
1

2
λ

(2)
β

)

Aβb −
1

2
λβEβb

+
[
1

2
λβBβtub +

dλβ

dht
Cβub

]

Cov(ht , hu)

]

h=h̄

dυ

The cross-covariances at dφ/dba(t1) and dφ/dbb(t2), by using Eq. (3.66), can be obtained from

the following equation [35]

Cov

(
dφ

dba
(t1),

dφ

dbb
(t2)

)

=

= E

[(
∂G

∂ba
(t1)+

∫ t1

0

λα(τ )

[
∂Qα(τ )

∂ba
− ∂Mαβ

∂ba
q̈β(τ )− ∂Dαβ

∂ba
q̇β(τ )− ∂Kαβ

∂ba
qβ(τ )

]

dτ

−E

[
dφ

dba

])(
∂G

∂bb
(t2)+

∫ t2

0

λγ (υ)

[
∂Qγ (υ)

∂bb
− ∂Mγ η

∂bb
q̈η(υ)− ∂Dγ η

∂bb
q̇η(υ)

−∂Kγ η

∂bb
qη(υ)

]

dυ − E

[
dφ

dbb

])]

(3.108)

3.7 Numerical Analysis of Truss and Beam Systems with Beat

Effects

3.7.1 The Scope of the Analysis of Symmetry System

It is known that contemporary design rules in civil engineering resulted from many years of re-

search and experiences. With the developments of computational hardware and software tech-

nology, state-of-the-art supersensitive measuring tools and computer codes nowadays serve the
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purpose of thorough structural analysis conducted to obtain results that are more reliable. Fur-

thermore, the cutting edge tools allow us to solve previously unreachable problems and discuss

whether some traditional structural models are still valid.

According to what is known, the bar structures loaded only in main nodes are generally de-

signed as a truss system, excluding the shear forces and bending moments out of the analysis.

In this approach, one bar is modelled as a truss element in a finite element setting. Therefore,

numerical computations include values of displacements and axial forces defined at end points

of the element only, save verifying what happens along the bar between main nodes. The impact

of these simplifications on the results of both the system statics and dynamics is very interesting.

For this reason, the aim of the present chapter is to study the properties of the above-mentioned

treatments in the context of the deterministic and stochastic analysis.

A purposeful action in this part of the paper is to select a symmetric type of structures as ap-

plied to data processing. During vibration of the structural systems with repeated segments, we

frequently observe periodical changes of amplitude. They are called the beat effect and from

the point of view the material fatigue can be regarded as a negative phenomenon in civil engi-

neering, notwithstanding in this area only. Therefore, numerical computations in this section

intend to identify this occurrence and go further to eliminate it by using damping and inputting

added mass to the model. Success in this field may lead to the development of parallel studies

in other areas, wherein the beat phenomenon is similarly undesirable.

3.7.2 The Model Bar Structure

With respect to aims listed in the previous section, we have chosen the dome consisting of 80

steel bars to undergo the analysis. Front and bird’s eye view of the described structure is pre-

sented in Fig. 3.1 and 3.2, respectively. The geometrical dimensions of the scheme selected in

the model creation are: hight – 5m and base diameter – 10m, compare [62,65].

Figure 3.1 Finite element setting in front view
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Figure 3.2 Finite element setting in bird’s eye view

We adopted the pipe cross-section with the 20 cm2 area in the numerical computation. Steel

is selected as the structural material, therefore the following characteristics are assumed: the

Young’s Modulus — 205GPa, mass density — 7.85 kNs2/m4 and Poisson’s ratio — 0.3. Nodes

1, 3, 5, 7 and 9 are defined as support points.

Geometric distribution of the elements and support placement makes the model fully symmet-

ric, which is consistent with assumptions described in the scope of the chapter. During the

subsequent data processing, four different models are created: 3D truss system, and three beam

systems with various finite element settings. The results obtained in static, dynamic and sensi-

tivity analysis are presented in consecutive sections.

3.7.3 A Truss System as an Example

3.7.3.1 Deterministic Statics

In the first stage of the studies, the bars are assumed to be joined by hinges while the nodes 1,

3, 5, 7 and 9 are supported by pins. These assumptions result in the creation of a 3D truss sys-

tem. In accordance with the finite element method, each bar is modelled as a 3D truss element.

Consequently, we obtain a system with 31 nodes and 80 elements. After applying the boundary

conditions, the total number of degrees of freedom are equal to 171. Numbering of nodes and

elements adopted in data processing is presented in Figs. 3.1 and 3.2.

In order to reach goals set out in detail in the first section of the chapter, we intentionally

skipped the standard process of including dead and live load and load of snow and wind, in
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the example for simplification purposes. As far as statics is concerned, only one vertical force

of 1000kN put on the top of the dome is selected (compare Fig. 3.1.). The choice of the type

of time-independent load is supposed to verify the geometry of the system. We will show that

symmetric results of internal forces and displacements, obtained for corresponding nodes and

elements will confirm the validity of the accepted model.

We address and solve deterministic statics independently by using two programs: POLSAP

and ROBOT. The extreme values of received displacements and internal forces are summa-

rized in Tables 3.1 and 3.2. The results presented in Table 3.1 are intentionally written with

five-decimal-digit accuracy to show the difference between the value of nodal’s displacement,

otherwise they might be mistakenly regarded as identical.

Table 3.1 Extreme vertical displacements, [cm]

Node Displacement Difference

Number POLSAP ROBOT [%]

31 -2.08558 -2.08424 0.064

10 and 2 -0.11594 -0.11979 3.214

4 and 8 -0.11593 -0.11978 3.214

6 -0.11592 -0.11977 3.214

Table 3.2 Extreme axial forces, [kN]

Element Axial Force Difference

Number POLSAP ROBOT [%]

61 and 64 463.585 463.268 0.068

66 and 69 463.565 463.248 0.068

65 and 70 463.559 463.243 0.068

67 and 68 463.556 463.238 0.069

62 and 63 463.544 463.226 0.069

Upon comparing significant values of forces and displacements obtained by the above-mentioned

programs, we observed a variance of 0.07%. Obviously, receiving bigger difference for much

smaller vertical movement is a natural outcome. This difference stands at 3.2%, but it can still

be applied to the structure.

Based on values presented in Tables 3.1 and 3.2 we observe that the analysis of symmetric

nodes gives identical results. This can lay the foundations for the validity of the model input to

the program.

3.7.3.2 Stochastic Statics

The stochastic analysis aims to define the material and geometrical characteristics as random

variables and entering their means and cross-covariances matrix during data processing. Volatil-

ity of the values of the Youngh’s modulus of steel seems to be hardly possible because contem-

porary industrial development is at such a high level. Therefore, to make the numerical com-

putation more probable, the elements’ cross-section areas Ab, b = 1, 2, ..., 80 are adopted as

random variables.

The process of generating the covariance matrix is carried out based on examples illustrated
in [35]. Below you will find excerpted program code used in the stochastic analysis. For the
complete procedure, see Appendix C.
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nrand=80 !total number of random variables

a0=20.0d0 !mean value of random variable

alpha=0.1d0 !coefficient of variation

al2a02=alpha*alpha*a0*a0 !multiplier of correlation function

theta=200.0d0 !dacay factor

!generating the covariance matrix

k=0

do j=1,nrand

do i=j,1,-1

xij=-dabs((x(j)-x(i))/theta)

yij=-dabs((y(j)-y(i))/theta)

correlij=dexp(xij+yij) !correlation function

k=k+1

cov(k)=al2a02*correlij

enddo

enddo

In the above depiction, x(i) and x(j) are the x-coordinates of the mid points of the next

two elements in the structure. Therefore y(i) and y(j) are the y-coordinates, respectively.

A0(a0) denotes mean values of the cross-sectional areas of the elements, which is 20cm2.

"theta"(θ ) designates the decay factor which clearly depends on the unit system used in com-

putations. Selecting the value of θ aims at getting the non-zero and no diagonal covariance

matrix of the random variables. After carrying out many trials for this example, θ =200 has

been accepted for further analysis.

"alpha" (α) is designated as the coefficient of variation and is obtained experimentally. This

factor is related to the degree of dispersion of the random variables. The necessary condition

to applying in the analysis the Second Moment Perturbation Method is that, standard deviation

σ(x) of the expected values being less than 15%. Otherwise, we need to apply a more com-

plicated statistical method such as Monte-Carlo Simulation increasing the difficulty of task’s

execution. It is known that from the definition σ(x)2 = Var(x). According to the procedure

of generating the covariance matrix applied during the analysis, the correlation function for the

elements from main diagonal is 1.0, hence, the variance of specific elements depends directly

on the correlation function multiplier. BecauseA0 =20cm2 and α equals 0.05, 0.10 or 0.15, are

employed in the numerical computations in correspondence with the values of σ(x): 5%, 10%

and 15%. The synthesis of static displacements obtained by stochastic analysis described above

is included in Table 3.3.

Table 3.3 Comparison the results of the vertical displacements obtained by POLSAP

Node α Expected Deterministic Difference

Number Value Result

[cm] [cm] [%]

0.05 -2.09068 0.24

31 0.10 -2.10599 -2.08558 0.98

0.15 -2.13150 2.20

0.05 -0.11615 0.18

10 and 2 0.10 -0.11677 -0.11594 0.72

0.15 -0.11780 1.60

0.05 -0.11615 0.19

8 and 4 0.10 -0.11679 -0.11593 0.74

0.15 -0.11785 1.66
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We present the values given in Table 3.3 specifically with five-decimal-digit accuracy to show

differences in values between points 10 and 2 as well as points 8 and 4. The nodes 10 and 2 are

symmetric relative to each other and their displacements are equal and very similar, yet slightly

different for nodes 8 and 4. A more concise presentation could be misleading, therefore the

results seem to be identical.

As it is seen, for the α-coefficient equal 0.05 both types of analysis give very similar values,

the difference is between 0.18 and 0.25%. However, that kind of situation is quite rare. For this

reason the displacements for α = 0.10 and α = 0.15 are shown, for which the obtained results

are also acceptable, the received values differ less than 2.20%. It is easily noticeable, that for

the top of the dome, for which the vertical movement is significantly greater than in other nodes,

the difference between deterministic and stochastic analysis is higher.

  

Figure 3.3 Truss System — Comparison of displacements for the nodes from the second ring

 

Figure 3.4 Truss System — Comparison of displacements for the nodes from the highest ring
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In Figs. 3.3 and 3.4, we show displacements obtained for selected nodes from the second and

the highest ring. For the clarity of presentation, apart from deterministic results, only the ex-

cepted values for α =0.15 are depicted. As seen in Fig. 3.3, values received for symmetric

nodes are equal. It is also clear, that the greater the distance between nodes and the top of the

dome, the lower the vertical movements.

3.7.3.3 Dynamic Analysis

With reference to the statics, dynamic analysis deals with the case of a sudden hit towards

vertical direction on to the top of the dome. A constant impulse in value of 1000kN is applied

during in time 2s, which is presented in Fig. 3.5.

t [s]
0.0 0.5 1.0 1.5 2.0

f(t) [kN]

10
3

Figure 3.5 Dynamic force

The eigenproblem is solved for the first 18 eigenpairs, converged after 22 iterations. Maximum

number of iteration required during the computation is 40. The tolerance convergence is 1.e-05.

Naturally, it turned out that the largest displacement is on the top of the structure, i.e. at node

31, therefore we chose this point for further dynamic analysis. Table 3.4 presents natural fre-

quencies of the truss system obtained independently by two programs: POLSAP and ROBOT.

The differences between results oscillate around 0.02%, for every mode number.

Table 3.4 First 7 natural frequencies of the undamped truss system, [1/s]

Mode Number POLSAP ROBOT

1 44.6661 44.6581

2 44.6702 44.6621

3 67.2234 67.2113

4 73.5313 73.5180

5 73.5407 73.5275

6 75.6006 75.5869

7 75.6113 75.5975

The graph of the vertical displacements at the top of the dome under dynamic excitation, with-

out including the damping during numerical computations, shows some regularity (compare

Fig. 3.6). It is seen that amplitude vibration is changing periodically in time and has a course

characteristic of systems with the beat phenomenon. The mentioned effect is the result of over-

lapping waves of slightly different frequencies. Looking at the numerical result shown in Table

3.4 two neighboring natural frequencies of the system are very similar because of dome seg-

ments’ symmetric geometry and undoubtedly influences special course of the vibrations. For

clarity of presentation, graphs below show time-dependent 1.0s long displacements.
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Figure 3.6 Deterministic results — time-dependent displacement for undamped truss system obtained by mode

superposition
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Figure 3.7 Deterministic results. Damping influence on vertical vibration — truss system
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So far, we considered a damping-free system, yet such a structure does hardly exist on its own.

Hence, further analysis is about the impact of damping factor on time-dependent displacements

and internal forces and attempts to eliminate observed phenomenon.

Comparing graphs presented in Fig. 3.7, we see that applying the modal damping coefficient

λ = 0.01 (compare Chapter 4) does not eliminate the beat phenomenon. In fact, it will only re-

duce the value of amplitude, while the periodic variability of the vibration remains unchanged.

Therefore, we attempt to eliminate the beat effect by inserting added mass to the structure. After

carrying out many tests and trials, most desired results are obtained for one mass input sym-

metrically on the top of the dome. It is sufficient to assume identical lumped mass coefficients,

in all three translational degrees of freedom are equal to 0.01 inertia of elements’ mass at that

node. The simplified form of the spatial scheme with additional mass is shown in Fig. 3.8.

 

Figure 3.8 3D-view of the dome with added lumped mass location

Table 3.5 shows natural frequencies of the undamped system with and without mass. It is seen

that inserting added mass to the structure results in significant reduction in first three frequen-

cies within the system, the said being responsible for the occurrence of the beat phenomenon.

This has effect on the disappearance of the periodic changes in the amplitude during the time-

dependent displacement, see Fig. 3.9a.

Table 3.5 First 7 natural frequencies of the undamped truss system obtained by POLSAP, [1/s]

mode number without added mass with added mass

1 44.6661 31.3885

2 44.6702 34.5817

3 67.2234 34.5850

4 73.5313 70.5873

5 73.5407 72.9371

6 75.6006 72.9475

7 75.6113 75.6016

Considering that dynamic displacement, added mass and damping are all involved in the analy-

sis and the former verified, structure’s behavior can be observed in practice. Taking into account

the coefficients of: modal damping λ = 0.01 and lumped mass to be 0.01 in all three directions

of movement results in the elimination of the beat effect and greater reduction in amplitude,

which makes the course of the vibrations more probable. To compare, see Fig. 3.9b.
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Figure 3.9 Truss model: a) added mass influence in undamped system; b) simultaneously effect of damping and

added mass on vibration course
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Including the uncertainties in the design random variables we can obtained a set of results in the

form of expectations and their standard deviations. FEM mesh consists of 80 truss elements,

whose cross-sectional areas are adopted as random variables. The stochastic analysis is made

with using the 10 highest variables and including the following coefficients α = 0.05 and

θ = 200, in the computations. The comparison of the received deterministic results in opposite

to the excepted values are presented on fig. 3.10.
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Figure 3.10 Displacement time response of the undamped system
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3.7.3.4 Dynamic Sensitivity

The sensitivity analysis aims at verifying how the change of the cross-sectional areas of spe-

cific elements affect the vertical displacement in the design point. It turns out that as initially

expected the top of the dome is the crucial point in the whole structure during data processing

for truss system. In the sensitivity analysis, the functional of structural response takes the form

φ = |qα|
qall

− 1 < 0 (3.109)

where qα, qall stand for displacement of selected node and allowable displacement in this point

respectively. The computation of dynamic response shows that the node 31 is the most sensitive

with respect to the changing of the design variables of the elements in its domain. The whole

graphs in this subsection present the dynamic z-displacement sensitivity of the top of the dome

with respect to cross-sectional area of element no. 78. The limit value of the deflection is taken

as 4 cm.
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Figure 3.11 The damping effect to the dynamic sensitivity in truss system

As to Fig. 3.11 we can see that sensitivity response amplitude changes periodically and its value

increases in time. Adding modal damping coefficient to the numerical computations results in

the stabilization of maximum deflection value from the point of equilibrium and gradual reduc-

tion in the level of vibration, nevertheless the nature of time-dependent displacement remains

unchanged. This only enforces the presence of the beat phenomenon in the system and leads to

the confusion that damping is insufficient to eliminate the effect.

Inserting added mass in sensitivity analysis eliminates the beat phenomenon successfully. Fig.

3.12a shows time-dependent increases in sensitivity response values with amplitude stabiliza-

tion and disappearance of periodic changes’ characteristics. If simultaneous inclusion of damp-
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ing and added mass occurs during the analysis, reduction in the beat effect and amplitude stabi-

lization at a constant level will follow. To compare this vibration see Fig. 3.12b.
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Figure 3.12 Truss system - design sensitivity with respect to cross sectional area of el. no 78 with influence of a)

added mass in undamped system; b) added mass and damping
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Including the stochastic analysis we obtained the expectations of dynamic sensitivity the dis-

placement at node no. 31 with respect to the cross-sectional ares of element no. 78, and their

cross-covariances — fig. 3.13. The coefficient using in the computations are equal α = 0.05,

θ = 200. The results are received with taking into account 10 highest values of variables.
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Figure 3.13 Time instant design sensitivity response



Numerical Analysis of Truss and Beam Systems with Beat Effects • 101

3.7.4 Comparison of Truss and Beam Systems

3.7.4.1 Statics Results

It is known that it is impossible to make perfect hinge joints for two or more elements in practice.

It is due to several factors such as: friction force at the point of contact between materials, er-

rors in the production stage of structure components, defects arisen by installing the elements,

damping etc. This section is an attempt to address and answer the question if designing bar

structures loaded only in nodes as 3D trusses for simplification purposes is wrong.

The goal of this part is to compare the truss and beam systems in different analysis. The second

model has identical finite element setting as the first one, yet the bars are rigidly connected in

nodes and so they are modeled as beam elements. Nodes 1, 3, 5 and 7 are supported by pins.

Static analysis shows insignificant values of the shear forces and bending moments in compar-

ison to the axial forces. For that reason omitting them has no serious impact on the strength

of calculation. As expected the largest displacement in the beam system is in node 31, but its

value is lower than the truss one. The vertical movement obtained by deterministic and stochas-

tic computations, for the top of the dome and for nodes from the first ring, are presented in

Tables 3.6 and 3.7. The results obtained for other nodes are summarized in Figs. 3.14a and

3.14b.

Table 3.6 The vertical displacements at the top of the dome obtained by POLSAP

Node α Stochastic Deterministic Difference

[cm] [cm] [%]

31 0.05 -2.05486 -2.04978 0.25

0.10 -2.07012 0.99

0.15 -2.09555 2.23

Table 3.7 Comparison of the displacements for the selected nodes received by POLSAP

Analysis Node Truss System Beam System Difference

[cm] [cm] [%]

Deterministic 31 -2.08558 -2.04978 1.72

10 and 2 -0.11594 -0.11585 0.08

8 and 4 -0.11593 -0.11584 0.08

Stochastic

α=0.05 31 -2.09068 -2.05486 1.71

10 and 2 -0.11615 -0.11605 0.09

8 and 4 -0.11615 -0.11605 0.09

α=0.10 31 -2.10599 -2.07012 1.70

10 and 2 -0.11677 -0.11667 0.09

8 and 4 -0.11679 -0.11669 0.09

α=0.15 31 -2.13150 -2.09555 1.69

10 and 2 -0.11780 -0.11770 0.08

8 and 4 -0.11785 -0.11775 0.08

Looking at Fig. 3.14 a) we can see that received displacement for nodes from the second ring

is lower in beam system. Rigid connection between its constitutive elements cause this. For the
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same reason, we can observe a different work of the particular elements in the structure in both

models. In the beam scheme, the vertical movements on the top of the dome are lower because

the nodes from the highest ring take greater part of the load than in the truss system, there-

fore, their displacements are larger (compare Fig. 3.14 b). What is important, the characters of

graphs showing the selected points presented in above figures are parallel for the described two

models. Results summarized in Table 3.7 show that biggest differences in vertical displacement

between the truss and the beam system are visible on the top of the dome, meaning that the

value is most significant as compared to other nodes.
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Figure 3.14 Comparison of the deterministic results gained for selected nodes from a) the second ring; b) the

highest ring.

3.7.4.2 Dynamics Results

The same dynamic excitation as in previous section is put on the top of the structure (see Fig.

3.3). The comparison of node 31 vibration course for the truss and the beam systems is pre-

sented in Fig. 3.13.
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Figure 3.15 Comparison of the displacements obtained for undamped schemes

It turns out that the vertical dynamic displacements for the selected node are slightly smaller for

the beam system and decay faster after taking the damping into account (compare Fig. 3.13).

This is due to greater rigidity of the model, caused by different bars’ connection. Obtained

results suggest that second model describes the real conditions better than the first one. In prac-

tice, it is impossible to make a perfect joint by a hinge, therefore the beam scheme seems to

reproduce the real structure work more reliably than the truss one. Looking at the course of

vibration, it can be observed that the amplitude is changing periodically in time. Hence, we

can get an impression that, in such a kind of repeatable symmetrical structures, the beat phe-

nomenon is present regardless of the connection type between elements.

Table 3.8 First 7 natural frequencies of the undamped beam system, [1/s]

mode number POLSAP ROBOT

1 44.7814 44.7268

2 44.7845 44.7308

3 67.4297 67.3464

4 74.0473 73.9615

5 74.0515 73.9707

6 75.8421 75.8392

7 75.8452 75.8490

The natural frequencies of the system shown in Table 3.8 validate the above assumption about

the beat effect, because of two neighboring frequencies having very similar values.
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Figure 3.16 The time-dependent displacements received for systems with damping including

The use of damping during data processing does not change the periodical character of vibra-

tion regardless of the model. However, after inserting lumped mass coefficient into the system

and putting it on the top of the dome, the beat effect has been eliminated successfully – for the

comparison of displacements see Fig. 3.15.

After applying the added mass to the system in the analysis, the amplitude reaches constancy in

time. Furthermore, two first frequencies of the system having greatest influence on the course

of dynamic displacements in the model gain different values (see Table 3.9).

Table 3.9 First 7 natural frequencies of the undamped beam system obtained by POLSAP, [1/s]

mode number without added mass with added mass

1 44.7814 31.7814

2 44.7845 34.6728

3 67.4297 34.6742

4 74.0473 71.0842

5 74.0515 73.4878

6 75.8421 73.4946

7 75.8452 75.8421

Considering the modal damping coefficient and lumped mass simultaneously results in the elim-

ination of the beat effect and gradual disappearance of the amplitude. Figs. 3.16-3.18 present

the comparison of vertical displacements for system with and without damping and added mass.
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Figure 3.17 The added mass effect on the dynamic vibration in undamped systems
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Figure 3.18 Displacement of node 31 in truss and beam systems — added mass and damping influence
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Figure 3.19 Comparison of the dynamic sensitivity with respect to cross sectional areas obtained for two models

a) undamped systems; b) with modal damping coefficient λ=0.01
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Figure 3.20 Dynamic sensitivity at node 31 - beam system: a) with added mass; b) with added mass and damping
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3.7.4.3 Dynamic Sensitivity - Deterministic Results

For the possibility of comparing the sensitivity response received for two different models,

conditions for the analysis are supposed to be identical. For that reason, time-dependent z-

displacement sensitivity on the top of the dome with respect to the cross-section area of the

element no. 78 is executed. We assumed the allowable deflection of 4 cm.

As predicted, the results obtained for beam scheme are analogous to the truss one. Inserting

added mass to the system eliminates the beat effect while including damping, stabilizes the am-

plitude of vibration. However, as comparing dynamical responses for both models, it turns out

that truss scheme is more sensitive to the change of the cross-sectional area of element no. 78

than the second one. It is due to lesser rigidity of connections between the particular elements,

caused by using a hinge in the joints. Figs. 3.19 and 3.20 show the dynamic sensitivity of ver-

tical displacement on the top of the dome with respect to the cross-sectional area of the 78-th

element, for the beam system with and without inertial mass and damping.

Static and dynamic analysis of the mentioned object demonstrate that, it is not wrong to de-

sign the spatial dome under static lead as a truss system because of similar results obtained

for both models. However, the beam system seems to describe the work of the structure more

reliably. What is obtained in this scheme are small values of bending moments in nodes, and el-

ements. Additionally, displacements received are smaller and vibration amplitude decays faster.

Obtained results prove that adding lumped mass to such bar structures eliminates the beat phe-

nomenon effectively.

3.7.5 Various Beam Systems

3.7.5.1 FEM Setting Selection

In the previous section, we analyzed the beam model consisting of 80 elements. However, it

does not comply with all requirements of the FEM setting selection. This is because in the

method, when the 3D beam system is considered, each bar should be divided into at least two

parts. In fact, imputing axial forces, the influence of shear forces and bending moments as

well as values of displacements and internal forces in mid-points of the element to the analysis,

makes obtained results more precise. The way of reasoning seems necessary to the proper un-

derstanding of the structure’s work.

It is commonly known that the greater number of elements included in such a numerical analy-

sis the higher its cost. Therefore, there is a very important issue in this case, namely, the number

of elements an individual bar should be divided to, for obtaining most optimal data processing

— yielding accurate results with minimal computational time required. For that reason, this

section contains two new beam models described, created on the basis of the same structure,

consisting of between 160 and 320 elements respectively. In order to be able to compare new

results with the previously obtained values for truss and 80-element beam systems, support con-

ditions of the structure, the same as in the case of static and dynamic loads, are identical for

each of the four considered models.

Figure 3.21 shows 160-element beam system that is the result of dividing each bar into two

beam elements in FEM setting. In this way, the system with 112 nodes, 160 elements and 651
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total number of degrees of freedom is received. The node 112, which is not seen in the men-

tioned figure, has all coordinates at zero value and it is located in the middle of the dome’s

base. This point is necessary for the correct orientation of local coordinate systems of particular

elements.

We obtained the second scheme by dividing one bar into four beam elements. That gives the

model with 272 nodes, 320 elements and 1611 total number of equations. For details concern-

ing numbering see Fig. 3.22. Directional node is used for the proper orientation as regards to

local systems’ elements, has a number 272 and its location is the same as the position of the

node 112 in the previous model.

 

Figure 3.21 160-element beam system - finite element setting

The creation of the above models is very laborious yet it gives numerous advantages. What is

most important for described schemes is that the values of displacements and internal forces for

the nodes along the chosen bars can be received. It affects the accuracy of obtained results, for

we simultaneously know what occurs inside the selected elements not only at their end-points.

That provides us with a different view on the functioning of the considered structure.
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Figure 3.22 320-element beam system - finite element setting

The program code for generating nodal data for 160-element scheme is presented bellow:

do j=1,n

do i=l(j),m(j),k(j)

ri=dfloat(i)

if ((k(j)).eq.6)then

if((i/2*2-i).eq.0) then

variable=theta(j)*xpi-fi/k(j)*(ri-l(j))

else

variable=theta(j)*xpi+fi/k(j)*(ri-l(j))

endif

else

if((i/2*2-i).eq.0) then

variable=theta(j)*xpi+fi/k(j)*(ri-l(j))

else

variable=theta(j)*xpi-fi/k(j)*(ri-l(j))

endif

endif

x(i)=r(j)*dcos(variable) !x-coordinate

y(i)=r(j)*dsin(variable) !y-coordinate
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z(i)=zn(j) !z-coordinate

enddo

enddo

Where n is the total number of the adopted rings, the variables l(j) and m(j) are the first

and the last number of the point in the i-th ring, while k(j) is the computations’ step. The

radius of the concerned ring is assumes as r(j). The expression theta(j)*xpi denotes the

angle of the offset along the circle of the first point in considered ring, in radians. The variables

l(j), m(j), k(j), theta(j), r(j) and z(j) are loaded from a different file dur-

ing the analysis. For the whole procedure see Appendix C

3.7.5.2 Static Analysis

The static analysis is carried out independently twice for 160- and 320-element models, from

a single vertical force with the value of 1000kN put on the top of the dome. The deterministic

analysis of nodes’ displacements and internal forces gives very similar values for both consid-

ered models but different from results received for the 80-element scheme.
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Figure 3.23 Deterministic results — bending moments obtained for the selected elements from a) 80-element; b)

160-element; c) 320-element scheme, [kNcm]

Creating models consisting of 160 or 320 elements is very laborious, yet it facilitates obtaining

search values for the bars’ mid-points. Therefore, as precise knowledge about deformation is

available the same applies to the forces’ distribution inside the element (compare Fig. 3.23).

Having known the value of bending moments only for end nodes may lead to inadequate shape

of internal forces’ graph that could cause design flaws.
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Table 3.10 Comparison the results of the vertical displacement at the choose nodes

Scheme Node α Stochastic Deterministic Difference

Number -coefficient Result [cm] Result [cm] [%]

a) The top of the dome

80-element 31 0.05 -2.05486 -2.04978 0.25

0.10 -2.07012 0.99

0.15 -2.09555 2.23

160-element 111 0.05 -2.05386 -2.04875 0.25

0.10 -2.06916 1.00

0.15 -2.09467 2.24

320-element 271 0.05 -2.05390 -2.04878 0.25

0.10 -2.06926 1.00

0.15 -2.09487 2.25

b) The main point from the top ring

160-element 96 0.05 -0.13743 -0.13718 0.18

0.10 -0.13818 0.73

0.15 -0.13944 1.65

320-element 226 0.05 -0.13745 -0.13720 0.18

0.10 -0.13820 0.73

0.15 -0.13945 1.64

c) The mid-point of el. from the top ring

160-element 108 0.05 -1.20925 -1.20630 0.24

0.10 -1.21810 0.98

0.15 -1.23285 2.20

320-element 258 0.05 -1.20923 -1.20629 0.24

0.10 -1.21807 0.98

0.15 -1.23280 2.20

d) The mid-point of el. lying on the y-axis

160-element 110 0.05 -1.20541 -1.20248 0.24

0.10 -1.21421 0.98

0.15 -1.22887 2.19

320-element 260 0.05 -1.20540 -1.20247 0.24

0.10 -1.21420 0.98

0.15 -1.22887 2.20

Parallel to the execution of deterministic analysis the stochastic analysis is performed. The

equation for the covariance matrix is analogous to the expression from the section 3.7.3.2. Due

to the complexity of covariance matrix’s generation for the 160- and 320-element models spe-

cially created program is used in both cases. For the whole procedure see Appendix C

We adopted the mean value of cross-sectional area to be 20cm2. The stochastic analysis is com-

puted for three coefficients of variation, which equal to 0.05, 0.10 and 0.15 respectively. For

all three beam systems 80-, 160- and 320-element, one average value of decay factor λ=200,

is assumed during data processing. Using a different value of λ in the models could pose the

question about the possibility of comparing the obtained results.
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Table 3.11 Comparison the results of the y-direction displacement at the choose nodes

Scheme Node α Stochastic Deterministic Difference

Number -coefficient Result [cm] Result [cm] [%]

a) The main point from the lower ring

80-element 15 0.05 0.15180 0.15146 0.22

0.10 0.15283 0.90

0.15 0.15455 2.04

160-element 24 0.05 0.15179 0.15143 0.24

0.10 0.15285 0.94

0.15 0.15461 2.10

320-element 48 0.05 0.15180 0.15144 0.24

0.10 0.15286 0.94

0.15 0.15463 2.11

b) The main point from the top ring

80-element 25 0.05 0.22163 0.22106 0.26

0.10 0.22334 1.03

0.15 0.22618 2.32

160-element 66 0.05 0.22178 0.22121 0.26

0.10 0.22349 1.03

0.15 0.22633 2.31

320-element 154 0.05 0.22179 0.22122 0.26

0.10 0.22350 1.03

0.15 0.22636 2.32

c) The mid-point of el. from the top ring

160-element 108 0.05 0.08131 0.08110 0.26

0.10 0.08194 1.04

0.15 0.08299 2.33

320-element 258 0.05 0.08132 0.08110 0.27

0.10 0.08197 1.07

0.15 0.08306 2.42

d) The mid-point of el. lying on the y-axis

160-element 110 0.05 0.10141 0.10114 0.27

0.10 0.10221 1.06

0.15 0.10356 2.39

320-element 260 0.05 0.10142 0.10115 0.27

0.10 0.10224 1.08

0.15 0.10360 2.42

The values of received vertical and horizontal movements are summarized in Tables 3.10 and

3.11. The difference between deterministic and stochastic values of displacements for α=0.05 is

about 0.18÷0.25%, for α=0.10 equal to 0.70÷1.10% and if α=0.15 it is 1.60÷2.42%. Looking

at the obtained results, we can see that the percentage difference for most displacement values

is higher than for the others.

During the process of generating covariance matrices for 160- and 320- element schemes, the

coordinates of the beam elements’ mid-points are loaded from an individual file. The procedure

of receiving data can be found in Appendix C and it is analogous to determining the coordinates
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of main nodes in mentioned models, presented at the beginning of this section. The mid-nodes

of particular bars are lying on rings at different heights and radii. Obtaining the mid-point co-

ordinates in each circle requires the input of the following data: number of first and last node

of considered ring, computation step, circle’s radius, z-coordinate and the angle of the offset –

the first point along the circle. In order to facilitate numerical computation a new program is

created and adopted to calculate necessary data prior to imputing first element node number in

a given circle.

3.7.5.3 Dynamic Analysis

Dynamic analysis for 160- and 320-element beam system carried out independently by two

methods: direct integration and mode superposition gave surprising results. The load has as-

sumed the form of a constant vertical impulse with the value of 1000kN occurring during 2

second time interval put on the top of the dome. Looking at results, it turns out that it is impos-

sible to eliminate the decay of amplitude vibration without including damping in the analysis.

Ignoring the influence of the factors that can inhibit the vibration, the amplitude was supposed

to be constant during the impulse. Only a thorough study of professional literature on the sub-

ject could provide the answer to the elaborate phenomenon. It turns out that the problem is

about the wrong selection of time steps in numerical computations. In accordance to [Bathe],

to get the correct results from dynamic analysis, the time step 1t chosen to the data processing

should be less than Tn/10, where Tn denotes the smallest period of the considered system. As

it is well known that FEM computations are approximate and in practice, for simplicity only

first few natural frequency of the system are considered in analysis. Hence, the smallest period

considered during the data processing may be several times higher than Tn , which leads to the

false values of displacements.

Depending on the method of numerical integration which is used in computations, the percent-

age of amplitude decay is different. For example, for Wilson θ methods it ranges from 0 to 18%

[3]. The comparison of the vertical time-dependent displacements obtained for different time

steps in 160-element system is presented in Fig. 3.24.

The dynamic analysis of the described schemes by mode superposition method faced even

greater obstacles. The problem turns out to be the symmetry and repeatable geometry of the

considered structure. During data processing for the 80-element beam scheme through mode

superposition method, only 18 initial values of the system’s natural frequencies are taken into

consideration. The density of FEM mesh gives slight differences between the values of the

mentioned 18 initial frequencies ranging from 19.63 to 24.78Hz for 160-element beam system,

and from 19.93 to 25.33Hz for 320-element model. The analysis of two last models by mode

superposition method with the inclusion of account only 18 natural frequencies only gave a pe-

culiar solution in the form of zero time-dependent displacements.

For receiving the proper course of vibration, the direct integration method for verification is

used. To receive accurate results for dynamic analysis by mode superposition, 160 natural fre-

quencies within 160-element scheme are to be included during data processing (compare Fig.

3.27), while for 320-element scheme this number is 470.
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Figure 3.24 Influence the selection of the time step to the correctness of the vibrations

Not only are so many frequency values unlikely to be observed in reality but they would cause

a significant increase in computational costs.

The comparison of time-dependent displacement on the top of the dome, for three described

beam models without damping is summarized in Fig. 3.26. It is clear, that the increase in the

number of elements in the system converges with the decrease in amplitude vibration however,

the beat phenomenon is to be observed in all cases. For clarity of presentation, Figs. 3.26 and

3.27 present graphs encompassing short interval equaling 0.30s.

As in case of the previous models, taking into account added mass during data processing elim-

inates the beat effect successfully. Because in 160-element scheme the particular elements are

shorter in comparison to the 80-element system, the lumped mass coefficients required to re-

move mentioned phenomenon are higher, i= 0.03. In Fig. 3.27 are presented the courses of

vibration obtained for 160-element beam system for different values of lumped mass coeffi-

cients.

Fig. 3.28 presents vibration courses on the top of the dome for all three beam models including

coefficients of damping λ = 0.01 and lumped mass i=0.03 in all three translational direction.

Because of different lengths of elements connected in the main node, the added mass in this

point varies in all described models, meaning that the values of inertial forces included during

data processing are unequal.
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Figure 3.25 160-element scheme - obtained results for time step 0.0001s.

It turns out that the graphs for 160- and 320-element models overlap, and the values are very

similar for the line of third scheme. For that reason, we assume that further increases in the coef-

ficient of lumped mass are pointless, because the beat phenomenon was successfully eliminated

and amplitude variation decays gradually over time.
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Figure 3.26 The influence of added mass and damping (λ=0.01) in two beam models.
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Figure 3.27 Comparison the dynamic displacement of undamped beam systems a) 80-element; b) 160-element;

c)320-element, received by mode superposition.
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Figure 3.28 The course of vibration in the 160-element system, depending on the inertia of the added mass

a) i=0.01; b) i=0.02; c) i=0.03.
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3.7.5.4 Time-dependent Design Sensitivity - Deterministic Results

As we described in the previous section, the increase of elements’ number in the FEM setting

results in receiving slightly different values of initial periods of the system. Due to the repetitive

frequency values within 160- and 320-element model, determining dynamic sensitivity without

damping and added mass through superposition method failed to produce satisfactory results.

The problem of numerical computation with this type of structures is widely described in the

literature. Unfortunately, we did not manage to find a revealing solution to this issue meaning

that including added mass on the top of the dome failed to produce sensitivity response by mode

superimposition with 18 initial frequencies in both models.
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Figure 3.29 Comparison the results of design sensitivity with respect to cross sectional area of el. no 16 with

influence of a) added mass; b) added mass and damping

Fig. 3.29 presents the result of dynamic sensitivity of z-direction displacement at the top of

the dome with respect to cross-sectional area of element number 16. It turns out that for 320-
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element model, sensitivity response design is lower than in the second one. This is because

change of cross-sectional area of the component endures twice shorter than in the 160-element

scheme. Therefore, the difference seems to be natural. Including added mass amounts to elim-

inating the beat phenomenon, however the amplitude of sensitivity response increases in time

- compare Fig. 3.29.a). If we apply the damping coefficient λ = 0.01 the graph of sensitivity

response gets stabilized (see Fig. 3.29b).

Despite mesh refinement bringing about numerous problems connected with obtaining correct

results, addressing the former is advisable, because of advantages it could give. The analysis

of 320-element beam model not only implies that the displacement of the selected node is most

sensitive with respect to the change of cross-section of specific bar, but also specifies which part

of this element is subject to displacement. It allows drawing the conclusion about the expected

mechanism of the structure damage.

3.7.6 Stochastic Static Sensitivity in Beam Systems

We compute Stochastic Static Sensitivity for both vertical and horizontal displacements of se-

lected nodes with respect to the cross-sectional areas of the specific elements. For better under-

standing of the types of data processing and results summarized in Tables 3.12 — 3.14, detailed

drawings were created (see Figs. 3.28 and 3.31) presenting the fragment of FEM setting in

considered beam models made of 80, 160 and 320 elements respectively.

Similarly as in the case of stochastic statics, numerical computations are made three times, for

the coefficient of variation equal to 0.05, 0.10 and 0.15, respectively. The percentage differences

between the deterministic and stochastic results depending on the value of the α-coefficient are

summarized in Table 3.12. Tables 3.13 and 3.14 present deterministic results, excepted val-

ues and standard deviations of static displacement sensitivity response obtained for α = 0.15.

Other factors taken to the analysis are the same as in previous section, namely λ = 200 and

A0 = 20cm2, for all three models. For adopted value of the coefficient of variation the dif-

ferences between deterministic and stochastic results gained range between 5.40% to 8.20%,

which in fact is the probable scenario. Only for the node no. 36 from 320-element beam

scheme, we obtain the difference equal to 19.32%, which may be caused by very small values

of displacement at this point, under 0.11cm and it is treated as a peculiar case. The static dis-

placement sensitivity standard deviations is about 25÷ 32% of the expectations, only for node

no. 36 it is about 46%, which confirms the previous assumption.

It turns out that the highest values of the y-displacement sensitivity response in the selected

nodes are obtained with respect to the cross-sectional areas of the elements in their own do-

main. The beam models consisting of 320 and 160 elements allow to examine the displacement

sensitivity for the mid-points lying along chosen bars. Thanks to that we can find out which

element part cross-section change makes the movement of a specific node most sensitive.

Table 3.12 The y-displacement static sensitivity with respect to the elements cross-sectional areas, for different

α-coefficient values

Scheme Node Element α Excepted Deterministic The percentage

Number Number -coefficient Values Results difference

80-element 15 67 0.05 0.01907 0.01893 0.74

0.10 0.01951 3.06

0.15 0.02023 6.87
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a)

b)

Figure 3.30 Finite element setting’s fragments in beam models: a)80-element; b) 160-element;
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Figure 3.31 Finite element setting’s fragments in 320-element beam scheme

Table 3.13 Static z-displacement sensitivity for the mid-point of element lying on y-axis with respect to cross-

sectional area — qall{z} = 0.145cm

Scheme Node Element Deterministic Excepted Difference Standard

Number Number Result Values [%] Deviations

160-element 96 24 0.01533 0.01648 7.50 0.00465

27 0.01497 0.01607 7.35 0.00451

25 0.01423 0.01500 5.41 0.00439

26 0.01408 0.01478 4.97 0.00425

320-element 226 49 0.01193 0.01291 8.21 0.00389

52 0.01138 0.01228 7.91 0.00365

48 0.00820 0.00887 8.17 0.00262

53 0.00780 0.00841 7.82 0.00245

Considering the values presented in tables 3.13 and 3.14, it turns out, that the sensitivity ob-

tained for selected node from the 320-element scheme is two times lower than in corresponding

point from 160-element model and consequently four times lower than in from 80-element sys-

tem. Subsequently, the following dependence can be set out: the higher the number of finite

elements in the mesh of the considered model, the smaller the impact of changes within the

cross-sectional area on bar’s part. Therefore, the obtained regularity with the values of the sen-

sitivity response in specific models seems to be natural.

The analysis of the stochastic sensitivity response, received for 160- and 320-element beam

schemes, gives additional information on the change of which part of specific bars determines

the results of displacements in selected nodes the most. In accordance with the above con-

clusion, the prescribed numerical computation in 320- and 160-element models gives a fresh

insight into the structure’s work. Except from the deterministic values we have the precision of
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these results in the form of expectations and their standard deviations.

Table 3.14 Static y-displacement sensitivity with respect to cross-sectional areas

Scheme Node Element Deterministic Excepted Difference Standard

Number Number Result Values [%] Deviations

a) The main point from the lower ring qall{y} = 0.16cm

80-element 15 36 -0.02619 -0.02773 5.88 0.00718

67 0.01893 0.02023 6.87 0.00570

20 -0.01484 -0.01565 5.46 0.00387

37 -0.01190 -0.01269 6.64 0.00354

160-element 24 89 -0.01311 -0.01392 6.18 0.00371

88 -0.01309 -0.01387 5.96 0.00363

30 0.00946 0.01011 6.87 0.00285

29 0.00945 0.01010 6.88 0.00285

320-element 48 178 -0.00656 -0.00697 6.25 0.00188

177 -0.00655 -0.00696 6.26 0.00185

60 0.00473 0.00505 6.77 0.00143

59 0.00473 0.00505 6.77 0.00143

b) The main point from the top ring qall{y} = 0.24cm

80-element 25 77 0.03509 0.03747 6.78 0.01049

66 -0.02250 -0.02403 6.80 0.00672

76 -0.01900 -0.02031 6.89 0.00570

65 -0.01064 -0.01137 6.86 0.00319

160-element 66 15 0.01760 0.01880 6.82 0.00531

5 0.01746 0.01865 6.82 0.00526

27 -0.01134 -0.01211 6.79 0.00338

28 -0.01116 -0.01192 6.81 0.00335

320-element 154 25 0.00892 0.00953 6.84 0.00268

35 0.00869 0.00928 6.79 0.00263

15 0.00881 0.00949 7.72 0.00267

5 0.00857 0.00916 6.88 0.00259

c) The mid- point of el. from the top ring qall{y} = 0.085cm

160-element 108 5 0.03080 0.03073 0.23 0.00775

27 -0.02003 -0.02138 6.74 0.00590

14 -0.01885 -0.02006 6.42 0.00549

28 -0.01714 -0.01811 5.66 0.00508

320-element 258 15 0.03573 0.03854 7.86 0.01210

53 -0.01036 -0.01109 7.05 0.00307

88 0.01084 0.01202 10.89 0.00384

34 -0.00971 -0.01035 6.59 0.00286

d) The mid-point of el. lying on the y-axis qall{y} = 0.11cm

160-element 110 6 0.02960 0.02964 0.14 0.00715

29 and 32 -0.01520 -0.01620 6.58 0.00449

30 and 31 -0.01407 -0.01496 6.33 0.00419

15 and 17 -0.01320 -0.01398 5.91 0.00380

320-element 260 16 0.03433 0.03707 7.98 0.01142

36 0.00828 0.00988 19.32 0.00462

57 and 64 -0.00776 -0.00828 6.70 0.00229

58 and 63 -0.00744 -0.00792 6.45 0.00219
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3.8 Summarizing Remarks

The combination of stochastic analysis and design sensitivity give us the complex results in the

form of deterministic values but also their means and cross-covariances. It seems to be very

important in modern designing, because even small uncertainties in the design parameters may

have a large influence on obtained values of displacements or internal forces.

The repeatable geometry in structures causes the presence of the beat phenomenon. Due to the

material fatigue, it can be treated as negative effect and can be successfully eliminating by using

added masses and damping.

The fully symmetry models selection should be avoided because of repeatable eigenvalues that

makes the process of numerical computations complicated and in many cases impossible. For

the same reason, the specific bars ought not to be divided into many finite elements in the mesh.



Chapter 4

Concluding Remarks

In this paper we are considering the problem of static and dynamic sensitivity of complex struc-

tures with including uncertainties in the design parameters. The computational results show

a great importance of dynamic analysis in the contemporary designing. Most of the building

objects are exposed to the dynamic force nowadays, therefore it is significant to include this

type of load in the design process. The main reason is that the same system may behave quite

differently under dynamic than static forces. For example, increasing the cross-sectional area

of the element or thickness of the plate, undoubtedly advantageous from the point of view of

static bearing capacity, may cause raising in the vibration amplitude which leads to the system

destruction.

Presenting the numerical results, we prove the great importance of both static and dynamic sen-

sitivity in the computations of the modern structures. It allows us to have a completely different

look at the work of individual elements. This way, we can find the most sensitive point, that de-

termines the stability of the entire system. Described in Section 2.6 the analysis of cable-stayed

bridge, is a good example of that. The sensitivity results show a large impact of the changes

in the cross-sectional areas of back cables supporting the pylon, to the displacements of span’s

middle-nodes. Due to the fact that these cables have no direct connections with the plate, they

seem to have the secondary meaning in the analyzed displacements. Only the sensitivity results

change the look at the work of the entire bridge and probable model of destruction.

By the combination of sensitivity analysis and random parameters, the computations of stochas-

tic systems prove the great significance of even small uncertainties in the design parameters to

the obtained results. In stochastic analysis the second moment perturbation method is used.

The specific functions are expanded in Taylor series around the mean values of random vari-

ables, excluding the terms higher than second order. This way we obtain first two probabilistic

moments of static and dynamic response and their sensitivities. This method requires small

fluctuation of random variables, less than 15%. During the data processing of bar dome, pre-

sented in Section 3.7, the influence of the uncertainties values of random variables to the final

displacements, are considered. It turns out, that when the randomness of the variables is under

15%, the difference between the deterministic and stochastic results is from 0.2 to 2.5% for

displacements and 0.3 to 7.0% for sensitivities, in this type of structure. This way we obtained

the set of results consisting of the deterministic values and the solution accuracy in the form of

expectations and their cross-covariances.

125
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During the computations of cable-stayed bridges the beat phenomenon was observed, that is

the periodical changes of the amplitude in time. The analysis of different structural systems,

confirmed the assumption that the repeatable geometry is largely responsible for appearing this

effect in building objects. In this type of schemes, neighboring natural frequency have very

similar values and their overlapping results in periodical changes of the amplitude. Because of

the material fatigue point of view, the beat effect may be treated as negative phenomenon, so

we tried to eliminate it by using the added mass in chosen nodes. Initially, the dynamic analysis

shows that this is an effective method, however only careful sensitivity analysis proves that, to

completely eliminate the beat phenomenon, the simultaneously including the added mass and

damping is necessary. Considering the different type of numerical examples, we came to the

conclusion that the added mass location is an individual issue for any structural scheme. How-

ever, in most cases the beat effect was eliminated effectively by putting added mass at the same

node as dynamic force.

Presented method of eliminating the beat phenomenon by added masses and damping is exam-

ined and proved only by the numerical results. Developing the practical solution of this issue

would be the culmination of the work on this problem and undoubtedly will be the focus of our

future research.

The deterministic and stochastic analysis of structural system with many degrees of freedom by

FEM, requires a lot of knowledge and experience to correctly interpret the results and locate

possible errors. It is known, that FEM is an approximate method, thus there are many factors

that determine obtaining the correct values of unknowns. At the beginning of the dynamic anal-

ysis of the described bar dome, the course of vibrations shows the amplitude decay without

considering the damping in data processing and the node displacements are insensitive with re-

spect to the cross-sectional areas of specific elements, which is impossible in reality. It turns out,

that the wrong values of time step chosen in the analysis is responsible for this phenomenon.

Only reduction of the time-step to several times gives a proper course of displacements and

sensitivities during time.

At the stage of design the structural system we should try to avoid the full symmetry of object

geometry, both in terms of the elements and supports arrangement. This type structures have

the neighbouring natural frequencies with very similar values, which is a problem in numeri-

cal computations, that is widely prescribed in world literature [3]. During the data processing

some eigenvalues are missing because of the seemingly identical values, that lead to confusing

results. If we consider the statics of this type of dome, we can model each bar as divided into

some beam elements. This gives more probable in reality results of displacements and internal

forces, than for the truss system. However, aiming to the dynamic or sensitivity analysis, it is

more appropriate to adopt the truss system, because using the dense mesh of beam elements

leads to a peculiar problem. For the structure that has the symmetrical elements arrangement,

it is sufficient to apply an asymmetrical setting of supports to avoid unnecessary numerical traps.

Analyzing structural system by FEM, an important part of computations is examining the cor-

rectness of the adopted model. It can be done for example by determining the condition number,

[2,33,59] for instance. However, this method can only be used successfully for the system with

small number of degrees of freedom. The aim of this paper is the analysis of MDOF structures.

Finding the condition number for this type of system is a highly complicated numerical task

and requires to develop an effective method of obtaining it. Therefore we intentionally exclude
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this issue in the presented dissertation and decide to address this problem in further scientific

research.

The static and dynamic sensitivity analysis with including the uncertainties in design parameters

is an effective tool in designing the contemporary structures. Only the sensitivity in combina-

tion with the statics and dynamics of the considered system give a full view on the work of

individual elements and on the structure as a whole. Additionally, including the random vari-

ables to the data processing results in obtaining the expectations and standard deviations, that

in many cases have important meaning in designing. This type of analysis allows us to find

the so-called design point, which means optimal solution with taking into account all relevant

aspects.
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Appendix A

Selected Input and Output Printing for Suspended Bridge
P O L S A P -- Deterministic and Stochastic Analysis for

Statics, Dynamics, Stability, Sensitivity and Optimization

of Medium- or Large-Scale Systems by Finite Element Method

Dynamic analysis of structure of the suspended bridge.

C O N T R O L P A R A M E T E R S

Number of nodal points.......................... 736

Number of finite element types.................. 3

Number of static load cases..................... 1

Number of requested frequencies................. 18

Analysis code .................................. 2

Deterministic options

eq.0, Statics

eq.1, Eigenproblem

eq.2, Mode superposition

eq.3, Response spectrum

eq.4, Direct integration

eq.5, Static sensitivity

eq.6, Eigenvalue sensitivity

eq.7, Buckling

eq.8, Dynamic sensitivity

eq.9, Optimization (Truss only)

Stochastic options

eq.10, Statics

eq.11, Dynamics

eq.12, Static sensitivity

eq.13, Dynamic sensitivity

Operation mode..................................0

eq.0, Execution

eq.1, Data check

Number of subspace iteration vectors............0

Number of equations per block...................0

137
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Structural Member
3 - D T R U S S E L E M E N T S

NUMBER OF TRUSS ELEMENTS = 154

NUMBER OF DIFFERENT ELEMENTS = 2

FLAG FOR SENSITIVITY OR OPTIMIZATION

OR/AND STOCHASTIC ANALYSIS (ISENS) = 0

EQ.0, NO

EQ.1, YES

DESIGN OR STOCHASTIC VARIABLE TYPE = 0

EQ.0, IF ISENS.EQ.0

EQ.1, CROSS SECTIONAL AREA

EQ.2, YOUNG MODULUS

EQ.3, MASS DENSITY (NDYN.EQ.6,8,11,13)

EQ.4, LENGTH

MATERIAL AND GEOMETRIC PROPERTIES

TYPE E ALPHA MASS AREA WEIGHT

1 2.000D+04 0.000D+00 7.850D-08 6.302D+01 0.000D+00

2 2.100D+04 0.000D+00 7.850D-08 1.018D+01 0.000D+00

ELEMENT CONNECTIONS

EL I J TYPE TEMP BAND

1 584 155 1 0.00 2115

2 584 165 1 0.00 2065

3 585 166 1 0.00 2066

4 585 176 1 0.00 2016

5 587 177 1 0.00 2023

6 587 187 1 0.00 1973

7 589 188 1 0.00 1980

8 589 198 1 0.00 1930

9 590 199 1 0.00 1931

10 590 209 1 0.00 1881

... ... ... ... ... ...

3 - D B E A M E L E M E N T S

NUMBER OF ELEMENTS = 675

NUMBER OF GEOMETRIC PROPERTY SETS = 3

NUMBER OF FIXED END FORCE SETS = 0

NUMBER OF MATERIALS = 2

FLAG FOR SENSITIVITY OR STOCHASTIC ANALYSIS (IS) = 1

EQ.0, NO

EQ.1, YES

DESIGN SENSITIVITY OR STOCHASTIC VARIABLE TYPE = 1

EQ.0, (IS.EQ.0)

EQ.1, CROSS SECTIONAL AREA

EQ.2, YOUNG MODULUS

EQ.3, MASS DENSITY (NDYN.EQ.6,8,11,13)

EQ.4, LENGTH
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MATERIAL PROPERTIES

MATERIAL YOUNG’S POISSON’S MASS WEIGHT

NUMBER MODULUS RATIO DENSITY DENSITY

1 4.100D+03 2.000D-01 2.500D-08 0.000D+00

2 2.050D+04 3.000D-01 7.850D-08 0.000D+00

BEAM GEOMETRIC PROPERTIES

SECTION AXIAL AREA SHEAR AREA SHEAR AREA TORSION INERTIA INERTIA

NUMBER A(1) A(2) A(3) J(1) I(2) I(3)

1 1.6000D+05 0.0000D+00 0.000D+00 9.0667D+09 4.5333D+09 4.5333D+09

2 3.2704D+03 0.0000D+00 0.000D+00 9.8454D+07 4.9227D+07 4.9227D+07

3 5.3200D+02 0.0000D+00 0.000D+00 3.4496D+06 3.3954D+06 5.4210D+04

BEAM NODE NODE NODE MATERIAL SECTION ELEMENT END LOADS END CODES

NUMBER I J K NUMBER NUMBER A B C D I J

1 736 127 325 1 1 0 0 0 0 0 0

2 127 573 325 1 1 0 0 0 0 0 0

3 573 574 325 1 1 0 0 0 0 0 0

4 574 575 325 1 1 0 0 0 0 0 0

5 575 576 325 1 1 0 0 0 0 0 0

6 576 577 325 1 1 0 0 0 0 0 0

7 577 578 325 1 1 0 0 0 0 0 0

8 578 579 325 1 1 0 0 0 0 0 0

9 579 580 325 1 1 0 0 0 0 0 0

10 580 581 325 1 1 0 0 0 0 0 0

... ... ... ... ... ... ... ... ... ... ... ...

T H I N P L A T E / S H E L L E L E M E N T S

ELEMENT TYPE = 6

NUMBER OF ELEMENTS = 510

NUMBER OF MATERIALS = 1

FLAG FOR SENSITIVITY OR STOCHASTIC ANALYSIS (IS) = 0

EQ.0, NO

EQ.1, YES

DESIGN SENSITIVITY OR STOCHASTIC VARIABLE TYPE = 0

EQ.0, (IS.EQ.0)

EQ.1, THICKNESS

EQ.2, YOUNG MODULUS

EQ.3, MASS DENSITY (NDYN.EQ.6,8,11,13)

MATERIAL PROPERTY TABLE

MATERIAL MASS THERMAL EXPANSION COEFFICIENTS

NUMBER DENSITY ALPHA(X) ALPHA(Y) ALPHA(Z)

1 2.500D-08 0.000D+00 0.000D+00 0.000D+00
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//ELASTIC CONSTANTS//

C(XX) C(XY) C(XG) C(YY) C(YG) G(XY)

1.067D+04 2.667D+03 0.000D+00 1.067D+04 0.000D+00 4.000D+03

THIN PLATE/SHELL ELEMENT DATA

ELEMENT MATERIAL AVERAGE NORMAL

NUMBER NODE-I NODE-J NODE-K NODE-L NODE-O NUMBER THICKNESS PRESSURE

1 1 12 13 2 0 1 0.300D+02 -0.225D-02

2 2 13 14 3 0 1 0.300D+02 -0.209D-02

3 3 14 15 4 0 1 0.300D+02 -0.209D-02

4 4 15 16 5 0 1 0.300D+02 -0.209D-02

5 5 16 17 6 0 1 0.300D+02 -0.225D-02

6 6 17 18 7 0 1 0.300D+02 -0.225D-02

... ... ... ... ... ... ... ... ...

S Y S T E M P A R A M E T E R S

Total number of equations....................... 3536

Maximum half-bandwidth.......................... 2169

Number of equations per block................... 3536

Number of blocks................................ 1

Selected Types of Analysis

E I G E N P R O B L E M A N A L Y S I S

CONTROL INFORMATION

Flag for additional printing...................... 0

eq.0, Suppress

eq.1, Print

Flag for Sturm sequence check..................... 0

eq.0, Check

eq.1, Pass

Maximum number of iterations required............. 20

Convergence tolerance............................. 1.00D-05

Cut-off frequency (cps)........................... 1.00D+08

Number of starting iteration vectors

to be read from File10 (Restart mode).......... 0

Flag for eigenvector printing..................... 1

eq.0, Print

eq.1, Suppress

Number of eigenvalues required.................... 12

(Convergence reached at iteration step 11)

P R I N T O F E I G E N V A L U E S

2.1875091047D+01 2.4749981516D+01 5.0976947247D+01 6.0367625090D+01

1.3272178413D+02 1.6540672149D+02 1.7446069218D+02 2.1042679519D+02

... ... ... ...
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P R I N T O F F R E Q U E N C I E S

MODE CIRCULAR FREQUENCY CYCLIC FREQUENCY PERIOD

NUMBER (RAD/SEC) (CYCL/SEC) (SEC)

1 4.6770814668D+00 7.4438063468D-01 1.3433987310D+00

2 4.9749353278D+00 7.9178554899D-01 1.2629682384D+00

3 7.1398142305D+00 1.1363367275D+00 8.8002083868D-01

4 7.7696605518D+00 1.2365798830D+00 8.0868208660D-01

5 8.0648229946D+00 1.2835564448D+00 7.7908533286D-01

6 1.0603493273D+01 1.6875983684D+00 5.9255805096D-01

... ... ... ...

D Y N A M I C A N A L Y S I S B Y M O D E S U P E R P O S I T I O N S

CONTROL INFORMATION

NUMBER OF TIME FORCE FUNCTIONS.................... 1

FLAG FOR GROUND MOTION LOADING.................... 0

(EQ.0 - NO, EQ.1 - YES)

NUMBER OF ARRIVAL TIMES........................... 1

NUMBER OF TIME STEPS.............................. 9999

OUTPUT PRINTING INTERVAL.......................... 10

TIME INCREMENT.................................... 4.000D-03

DAMPING FACTOR.................................... 0.000D+00

FLAG FOR INTEGRATION OF UNCOUPLED EQUATIONS....... 0

(EQ.0 - THETA WILSON, EQ.1 - NEWMARK

FLAG FOR ELIMINATION OF SECULARITIES.............. 0

(EQ.0 - NO, EQ.1 - YES)

FREQUENCY RANGE FACTOR FOR SECULAR ELIMINATION.... 0.000D+00

(WITH RESPECT TO FIRST NATURAL FREQUENCY)

DYNAMIC NODAL FORCES/MOMENTS

NODAL TIME ARRIVAL TIME

NODE DEGREE OF FUNCTION TIME FUNCTION

NUMBER FREEDOM NUMBER NUMBER MULTIPLIER

635 1 1 1 1.00D+00

ARRIVAL TIME VALUES

ENTRY ARRIVAL TIME

NUMBER VALUE

1 0.000000

TIME FUNCTION NUMBER = 1

FUNCTION DESCRIPTION = Distributed Heaviside’s function1

NUMBER OF ABSCISSAE = 2

FUNCTION SCALE FACTOR = 1.00D+00

TIME VALUE FUNCTION TIME VALUE FUNCTION

0.00000E+00 -1.000000000D+04 4.00000E+01 -1.000000000D+04

DISPLACEMENT COMPONENT TIME HISTORY REQUESTS

NODE NODAL DEGREES OF FREEDOM

NUMBER * * * * * *
635 1 0 0 0 0 0

580 1 0 0 0 0 0

633 1 0 0 0 0 0
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CODE FOR DISPLACEMENT OUTPUT TYPE = 1

EQ.1,2, HISTORY AND MAXIMA

EQ.3, MAXIMA ONLY

SENSITIVITY COMPONENT TIME HISTORY REQUEST

NODE NUMBER.....................= 635

DEGREE OF FREEDOM...............= 1

ALLOWABLE DISPLACEMENT..........= 1.000D+01

Appendix B

Selected Input and Output Printing for the Bar Dome

Structural Member in the Selected Models

Axial-symmetrical dome- truss system - stochastic statics

C O N T R O L P A R A M E T E R S

Number of nodal points.......................... 31

Number of finite element types.................. 1

Number of static load cases..................... 1

Number of requested frequencies................. 0

Analysis code .................................. 10

Deterministic options

eq.0, Statics

eq.1, Eigenproblem

eq.2, Mode superposition

eq.3, Response spectrum

eq.4, Direct integration

eq.5, Static sensitivity

eq.6, Eigenvalue sensitivity

eq.7, Buckling

eq.8, Dynamic sensitivity

eq.9, Optimization (Truss only)

Stochastic options

eq.10, Statics

eq.11, Dynamics

eq.12, Static sensitivity

eq.13, Dynamic sensitivity

Operation mode.................................. 0

eq.0, Execution

eq.1, Data check

...............

3 / D T R U S S E L E M E N T S

NUMBER OF TRUSS ELEMENTS = 80

NUMBER OF DIFFERENT ELEMENTS = 1
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FLAG FOR SENSITIVITY OR OPTIMIZATION

OR/AND STOCHASTIC ANALYSIS (ISENS) = 1

EQ.0, NO

EQ.1, YES

DESIGN OR STOCHASTIC VARIABLE TYPE = 1

EQ.0, IF ISENS.EQ.0

EQ.1, CROSS SECTIONAL AREA

EQ.2, YOUNG MODULUS

EQ.3, MASS DENSITY (NDYN.EQ.6,8,11,13)

EQ.4, LENGTH

MATERIAL AND GEOMETRIC PROPERTIES

TYPE E ALPHA MASS AREA WEIGHT

1 2.05000D+04 0.00000D+00 7.85000D-08 2.00000D+01 0.00000D+00

Axial-symmetrical dome - beam system - static sensitivity

C O N T R O L P A R A M E T E R S

Number of nodal points.......................... 112

Number of finite element types.................. 1

Number of static load cases..................... 1

Number of requested frequencies................. 0

Analysis code .................................. 12

Deterministic options

eq.0, Statics

eq.1, Eigenproblem

eq.2, Mode superposition

eq.3, Response spectrum

eq.4, Direct integration

eq.5, Static sensitivity

eq.6, Eigenvalue sensitivity

eq.7, Buckling

eq.8, Dynamic sensitivity

eq.9, Optimization (Truss only)

Stochastic options

eq.10, Statics

eq.11, Dynamics

eq.12, Static sensitivity

eq.13, Dynamic sensitivity

........

3 - D B E A M E L E M E N T S

NUMBER OF ELEMENTS = 160
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NUMBER OF GEOMETRIC PROPERTY SETS = 1

NUMBER OF FIXED END FORCE SETS = 0

NUMBER OF MATERIALS = 1

FLAG FOR SENSITIVITY OR STOCHASTIC ANALYSIS (IS) = 1

EQ.0, NO

EQ.1, YES

DESIGN SENSITIVITY OR STOCHASTIC VARIABLE TYPE = 1

EQ.0, (IS.EQ.0)

EQ.1, CROSS SECTIONAL AREA

EQ.2, YOUNG MODULUS

EQ.3, MASS DENSITY (NDYN.EQ.6,8,11,13)

EQ.4, LENGTH

MATERIAL PROPERTIES

MATERIAL YOUNG’S POISSON’S MASS WEIGHT

NUMBER MODULUS RATIO DENSITY DENSITY

1 2.05000D+04 3.000D-01 7.850D-08 0.000D+00

BEAM GEOMETRIC PROPERTIES

SECTION AXIAL AREA SHEAR AREA SHEAR AREA TORSION INERTIA

NUMBER A(1) A(2) A(3) J(1) I(2)

1 2.0000D+01 0.0000D+00 0.0000D+00 1.4621D+02 8.6667D+01

... ... ... ... ... ...

Parameters in Deterministic Dynamics

Axial-symmetrical dome - deterministic dynamic s

C O N T R O L P A R A M E T E R S

Number of nodal points.......................... 32

Number of finite element types.................. 1

Number of static load cases..................... 0

Number of requested frequencies................. 18

Analysis code .................................. 8

Deterministic options

eq.0, Statics

....

eq.8, Dynamic sensitivity

....

Number of design sensitivity constraints........ 1

....

3 - D B E A M E L E M E N T S

NUMBER OF ELEMENTS = 80

NUMBER OF GEOMETRIC PROPERTY SETS = 1

NUMBER OF FIXED END FORCE SETS = 0
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NUMBER OF MATERIALS = 1

FLAG FOR SENSITIVITY OR STOCHASTIC ANALYSIS (IS) = 1

EQ.0, NO

EQ.1, YES

DESIGN SENSITIVITY OR STOCHASTIC VARIABLE TYPE = 1

EQ.0, (IS.EQ.0)

EQ.1, CROSS SECTIONAL AREA ....

E I G E N P R O B L E M A N A L Y S I S

CONTROL INFORMATION

Flag for additional printing...................... 0

eq.0, Suppress

eq.1, Print

Flag for Sturm sequence check..................... 0

eq.0, Check

eq.1, Pass

Maximum number of iterations required............. 40

Convergence tolerance............................. 1.00D-05

Cut-off frequency (cps)........................... 1.00D+08

Number of starting iteration vectors

to be read from File10 (Restart mode).......... 0

Flag for eigenvector printing..................... 1

eq.0, Print

eq.1, Suppress

Number of eigenvalues required.................... 18

(Convergence reached at iteration step 23)

P R I N T O F E I G E N V A L U E S

7.8925200020D+04 7.8939427095D+04 1.7908251584D+05

2.2641138818D+05 2.2956983822D+05 2.3175926150D+05

... ... ...

D Y N A M I C A N A L Y S I S B Y M O D E S U P E R P O S I T I O N S

CONTROL INFORMATION

NUMBER OF TIME FORCE FUNCTIONS.................... 1

FLAG FOR GROUND MOTION LOADING.................... 0

(EQ.0 - NO, EQ.1 - YES)

NUMBER OF ARRIVAL TIMES........................... 1

NUMBER OF TIME STEPS.............................. 9999

OUTPUT PRINTING INTERVAL.......................... 20

TIME INCREMENT.................................... 2.000D-04

DAMPING FACTOR.................................... 0.000D+00

FLAG FOR INTEGRATION OF UNCOUPLED EQUATIONS....... 0

(EQ.0 - THETA WILSON, EQ.1 - NEWMARK)

FLAG FOR ELIMINATION OF SECULARITIES.............. 0
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(EQ.0 - NO, EQ.1 - YES)

FREQUENCY RANGE FACTOR FOR SECULAR ELIMINATION.... 0.000D+00

(WITH RESPECT TO FIRST NATURAL FREQUENCY)

Examples Design Constraints is Sensitivity Stochastic Analysis

D E S I G N C O N S T R A I N T S

NODE D.C. X-AXIS Y-AXIS Z-AXIS

NUMBER NUMBER DISPLACEMENT DISPLACEMENT DISPLACEMENT

110 1 0.000000000D+00 1.100000000D-01 0.000000000D+00

STRUCTURE ELEMENT LOAD MULTIPLIERS

LOAD CASE A B C D

1 0.000 0.000 0.000 0.000

FLAGS FOR STOCHASTIC SOLUTION OUTPUT

(EQ.0 - NO, EQ.1 - YES)

READ INPUT COVARIANCES FROM A BINARY FILE...........= 1

PRINTING EXPECTATIONS OF DISPLACEMENTS..............= 1

PRINTING COVARIANCES OF DISPLACEMENTS...............= 0

PRINTING ELEMENT STRESSES AT MEAN CONFIGURATION.....= 1

INPUT COVARIANCES ARE READ IN FROM FILE 160elnowa2.cov

E X P E C T A T I O N S E ( N ) A N D S T A N D A R D

D E V I A T I O N S D ( N ) O F S E N S I T I V I T I E S

(N = 1,..., NUMBER OF DESIGN VARIABLES)

E( 1) = -3.023924927738D-03 E( 2) = -3.073606482801D-03

D( 1) = 1.770134740409D-03 D( 2) = 1.450393582299D-03

... ...

Appendix D - Selected Fortran Computer Codes

!Program to generate the covariance matrix for the 80el. beam system

implicit real*8 (a-h,o-z)

Dimension x(80),y(80),z(80),cov(3240)

nrand=80 !elements’ number

open (5,file=’middlenodes80el1.txt’,status=’old’)

READ (5,’(3f10.3)’) (x(j),y(j),z(j),j=1,nrand)

a0=20.0d0 !mean value of random variable
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alpha=0.10d0 !coefficient determined by experimental method

al2a02=alpha*alpha*a0*a0

theta=200.0d0!scalling factor

!generating the covariance matrix

k=0

do j=1,nrand

do i=j,1,-1

xij=-dabs((x(j)-x(i))/theta)

yij=-dabs((y(j)-y(i))/theta)

correlij=dexp(xij+yij)

k=k+1

cov(k)=al2a02*correlij

enddo

enddo

open (6,file=’xyz1.inp’,status=’unknown’)

write(6,’(1p3d20.10)’) (x(i),y(i),z(i),i=1,80)

open (4,file=’80elnowa.cov’,status=’unknown’,form=’unformatted’)

rewind 4

write (4) cov

end

!Program to generate the coordinates of the middle of the elements in 80el.

!beam system

implicit real*8 (a-h,o-z)

integer fi

Dimension l(8),m(8),k(8),theta(8),r(8),zn(8),

* x(80),y(80),z(80),a(80)

xpi=0.01745329251994d0

fi=36.0d0

n=8

nrand=80

open (5,file=’gen.middlenodes80el.txt’,status=’old’)

READ (5,’(3i10,3f10.5)’) (l(j),m(j),k(j),theta(j),r(j),

* zn(j),j=1,n)

do j=1,n

do i=l(j),m(j),k(j)

ri=dfloat(i)

variable=(theta(j)+(fi/k(j))*(ri-l(j)))*xpi

x(i)=r(j)*dcos(variable)

y(i)=r(j)*dsin(variable)

z(i)=zn(j)

enddo

enddo

do i=1,nrand

a(i)=i

enddo

open (6,file=’middlenodes80el.txt’,status=’unknown’)

write (6,’(1f10.0,3f10.3)’) (a(i),x(i),y(i),z(i),i=1,nrand)

end

!Program to generate the nodal coordinates for the 80el. beam system
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implicit real*8 (a-h,o-z)

Dimension l(3),m(3),theta(3),r(3),zn(3),

* x(30),y(30),z(30),a(30)

xpi=0.01745329251994d0

fi=36.0d0

n=3

nrand=30

open (5,file=’gen.nodes80el.txt’,status=’old’)

READ (5,’(2i10,3f10.5)’) (l(j),m(j),theta(j),r(j),

* zn(j),j=1,n)

do j=1,n

do i=l(j),m(j)

ri=dfloat(i)

variable=(theta(j)+fi*(ri-l(j)))*xpi

x(i)=r(j)*dcos(variable)

y(i)=r(j)*dsin(variable)

z(i)=zn(j)

enddo

enddo

do i=1,nrand

a(i)=i

enddo

open (6,file=’coordinates80el.txt’,status=’unknown’)

write (6,’(1f10.0,3f10.3)’) (a(i),x(i),y(i),z(i),i=1,nrand)

end

!Program to generate the covariance matrix for the 160el. beam system

implicit real*8 (a-h,o-z)

Dimension a(160),x(160),y(160),z(160),cov(12880)

nrand=160 !elements’ number

open (5,file=’middlenodes160el.txt’,status=’old’)

READ (5,’(1f10.0,3f10.3)’) (a(j),x(j),y(j),z(j),j=1,nrand)

a0=20.0d0 !mean value of random variable

alpha=0.15d0 !coefficient determined by experimental method

al2a02=alpha*alpha*a0*a0

theta=200.0d0 !scalling factor

!generating the covariance matrix

k=0

do j=1,nrand

do i=j,1,-1

xij=-dabs((x(j)-x(i))/theta)

yij=-dabs((y(j)-y(i))/theta)

correlij=dexp(xij)*dexp(yij)

k=k+1

cov(k)=al2a02*correlij

enddo

enddo

open (6,file=’160elnowa2.cov’,status=’unknown’,form=’unformatted’)

rewind 6

write (6) cov
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open (7,file=’macierz.txt’, status=’unknown’)

write (7,’(10f10.3)’) (cov(k),k=1,12880)

end

!Program to generate the coordinates of the middle of the elements

!in 320el. beam system

implicit real*8 (a-h,o-z)

integer fi

Dimension l(32),m(32),k(32),theta(32),r(32),zn(32),

* x(320),y(320),z(320),a(320)

xpi=0.01745329251994d0

fi=36.0d0

n=32

nrand=320 !elements’ number

open (5,file=’gen.middlenodes320el.txt’,status=’old’)

READ (5,’(3i10,3f10.5)’) (l(j),m(j),k(j),theta(j),r(j),

* zn(j),j=1,n)

do j=1,n

do i=l(j),m(j),k(j)

ri=dfloat(i)

variable=(theta(j)+(fi/k(j))*(ri-l(j)))*xpi

x(i)=r(j)*dcos(variable)

y(i)=r(j)*dsin(variable)

z(i)=zn(j)

enddo

enddo

do i=1,nrand

a(i)=i

enddo

open (6,file=’middlenodes320el.txt’,status=’unknown’)

write (6,’(1f10.0,3f10.3)’) (a(i),x(i),y(i),z(i),i=1,nrand)

end

!Program to generate the coordinates of the middle-point of the choosen

!elements in 320el. beam system

implicit real*8 (a-h,o-z)

real xn,yn,zn,an,bn,rn,thetan,cn

Dimension x(270),y(270),z(270),a(270)

xpi=0.01745329251994d0

an=284 !element number

k=6 !number of first node in the element

l=8 !number of second node in the element

open (5,file=’Coordinates320el.txt’,status=’old’)

READ (5,’(1f10.0,3f10.3)’) (a(j),x(j),y(j),z(j),j=1,270)

xn=0.5*(x(k)+x(l))!x-coordinate of the middle of the an-element

yn=0.5*(y(k)+y(l))!y-coordinate of the middle of the an-element

zn=0.5*(z(k)+z(l))!z-coordinate of the middle of the an-element

bn=xn*xn+yn*yn
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rn=SQRT(bn)!radius of the circle

cn=xn/rn

thetan=asin(cn)/xpi+270.0d0 !the offset angle

open (6,file=’wyniki.txt’,status=’unknown’)

write (6,’(1f10.0,5f10.5)’) an,xn,yn,thetan,rn,zn

end


